A new interpretation of the date of the ‘Little Ice Age’ glacier maximum at Svartisen and Okstindan, northern Norway

The Holocene ◽  
2003 ◽  
Vol 13 (1) ◽  
pp. 83-95 ◽  
Author(s):  
Stefan Winkler
2020 ◽  
Author(s):  
Joshua Leigh ◽  
Chris Stokes ◽  
David Evans ◽  
Rachel Carr ◽  
Liss Andreassen

<p>Glaciers are important indicators of climate change and observations worldwide document increasing rates of mountain glacier recession. Here we present ~200 years of change in mountain glacier extent in northern Troms and western Finnmark. This was achieved through: (1) mapping recent (post-1980s) changes in ice extent from remotely sensed data and (2) lichenometric dating and mapping of major moraine systems within a sub-set of the main study area (the Rotsund Valley). Lichenometric dating reveals that the Little Ice Age (LIA) maximum occurred as early as AD 1814 (±41 years), which is before the early-20th century LIA maximum proposed on the nearby Lyngen Peninsula, but younger than the LIA maximum limits in southern and central Norway (ca. AD 1740-50). Between LIA maximum and AD 1989, the reconstructed glaciers (n = 15) shrank by 3.9 km<sup>2</sup> (39%), with those that shrank by >50% fronted by proglacial lakes. Between AD 1989 and 2018, the total area of glaciers within the study area (n = 219 in AD 1989) shrank by ~35 km<sup>2</sup>. Very small glaciers (<0.5 km<sup>2</sup> in AD 1989) show the highest relative rates of shrinkage, and 90% of mapped glaciers within the study area are <0.5 km<sup>2</sup> as of AD 2018.</p>


2020 ◽  
Vol 52 (1) ◽  
pp. 281-311
Author(s):  
J. R. Leigh ◽  
C. R. Stokes ◽  
D. J. A. Evans ◽  
R. J. Carr ◽  
L. M. Andreassen

2018 ◽  
Vol 64 (243) ◽  
pp. 100-118 ◽  
Author(s):  
CHRIS R. STOKES ◽  
LISS M. ANDREASSEN ◽  
MATTHEW R. CHAMPION ◽  
GEOFFREY D. CORNER

ABSTRACTThe recession of mountain glaciers worldwide is increasing global sea level and, in many regions, human activities will have to adapt to changes in surface hydrology. Thus, it is important to provide up-to-date analyses of glacier change and the factors modulating their response to climate warming. Here we report changes in the extent of >120 glaciers on the Lyngen Peninsula, northern Norway, where glacier runoff is utilised for hydropower and where glacial lake outburst floods have occurred. Glaciers covered at least 114 km2 in 1953 and we compare this inventory with those from 1988, 2001 and a new one from 2014, and previously-dated Little Ice Age (LIA) limits. Results show a steady reduction in area (~0.3% a−1) between their LIA maximum (~1915) and 1988, consistent with increasing summer air temperatures, but recession paused between 1988 and 2001, coinciding with increased winter precipitation. Air temperatures increased 0.5°C per decade from the 1990s and the rate of recession accelerated to ~1% a−1 between 2001 and 2014 when glacier area totalled ~95.7 km2. Small glaciers (<0.05 km2) with low maximum elevations (<1400 m) experienced the largest percentage losses and, if warming continues, several glaciers may disappear within the next two decades.


The Holocene ◽  
2018 ◽  
Vol 28 (7) ◽  
pp. 1041-1056 ◽  
Author(s):  
Henrik Løseth Jansen ◽  
Svein Olaf Dahl ◽  
Pål Ringkjøb Nielsen

The course of the ‘Little Ice Age’ (LIA) in Scandinavia is characterized by large glacier advances that started at about AD 1300 and culminated at about AD 1750. The end of the LIA is marked as an unprecedented and ongoing glacier retreat that accelerated from the early 20th century. The course of the LIA is here presented based on fluctuations of Austerdalsisen, the largest valley outlet glacier draining the Austre Svartisen (Østisen) ice cap, Nordland, northern Norway. During the LIA glacierization, Austerdalsisen separated into two branches, and relative to the present glacier terminus, a western valley glacier advanced more than 4 km, whereas a SE valley glacier advanced about 3 km. At present, meltwater from Austerdalsisen drains towards SE. If the glacier obtains a critical magnitude, however, most of the meltwater is drained westwards across a higher overflow gap. Based on radiocarbon-dated lake sediments, distal proglacial glaciolacustrine/glaciofluvial sediments and historical observations, the course and chronology of the deglaciation following the LIA glacier maximum at Austerdalsisen are established. Because of high sedimentation rates due to low local bedrock resistance to glacier erosion beneath Austerdalsisen, however, cores from distal glacier-fed lakes covering the entire LIA/Holocene are hard to retrieve. Hence, an inverse approach to reconstruct the entire course of the LIA glacierization at Austerdalsisen is performed by suggesting little input of glacier-meltwater-induced sediments to the SE distal glacier-fed lake Litl Røvatnet, whenever Austerdalsisen rerouted meltwater westwards. If the terminus of Austerdalsisen was near the critical magnitude threshold, regular glacier lake outburst floods (GLOFs) towards SE occurred.


Author(s):  
W.P. De Lange

The Greenhouse Effect acts to slow the escape of infrared radiation to space, and hence warms the atmosphere. The oceans derive almost all of their thermal energy from the sun, and none from infrared radiation in the atmosphere. The thermal energy stored by the oceans is transported globally and released after a range of different time periods. The release of thermal energy from the oceans modifies the behaviour of atmospheric circulation, and hence varies climate. Based on ocean behaviour, New Zealand can expect weather patterns similar to those from 1890-1922 and another Little Ice Age may develop this century.


2013 ◽  
Vol 6 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Anastasia Gornostayeva ◽  
◽  
Dmitry Demezhko ◽  
◽  
Keyword(s):  

2020 ◽  
Vol 42 (1) ◽  
pp. 4-12
Author(s):  
Valeriy Fedorov ◽  
Denis Frolov

Sign in / Sign up

Export Citation Format

Share Document