scholarly journals Widespread and accelerating glacier retreat on the Lyngen Peninsula, northern Norway, since their ‘Little Ice Age’ maximum

2018 ◽  
Vol 64 (243) ◽  
pp. 100-118 ◽  
Author(s):  
CHRIS R. STOKES ◽  
LISS M. ANDREASSEN ◽  
MATTHEW R. CHAMPION ◽  
GEOFFREY D. CORNER

ABSTRACTThe recession of mountain glaciers worldwide is increasing global sea level and, in many regions, human activities will have to adapt to changes in surface hydrology. Thus, it is important to provide up-to-date analyses of glacier change and the factors modulating their response to climate warming. Here we report changes in the extent of >120 glaciers on the Lyngen Peninsula, northern Norway, where glacier runoff is utilised for hydropower and where glacial lake outburst floods have occurred. Glaciers covered at least 114 km2 in 1953 and we compare this inventory with those from 1988, 2001 and a new one from 2014, and previously-dated Little Ice Age (LIA) limits. Results show a steady reduction in area (~0.3% a−1) between their LIA maximum (~1915) and 1988, consistent with increasing summer air temperatures, but recession paused between 1988 and 2001, coinciding with increased winter precipitation. Air temperatures increased 0.5°C per decade from the 1990s and the rate of recession accelerated to ~1% a−1 between 2001 and 2014 when glacier area totalled ~95.7 km2. Small glaciers (<0.05 km2) with low maximum elevations (<1400 m) experienced the largest percentage losses and, if warming continues, several glaciers may disappear within the next two decades.

2021 ◽  
pp. 103722
Author(s):  
Adam Emmer ◽  
Joanne L. Wood ◽  
Simon J. Cook ◽  
Stephan Harrison ◽  
Ryan Wilson ◽  
...  

The Holocene ◽  
2016 ◽  
Vol 27 (2) ◽  
pp. 292-308 ◽  
Author(s):  
Ann V Rowan

Northern Hemisphere cooling between 1400 and 1900 in the Common Era (CE) resulted in the expansion of glaciers during a period known as the ‘Little Ice Age’ (LIA). Early investigation of recent advances of Himalayan glaciers assumed that these events were synchronous with LIA advances identified in Europe, based on the appearance and position of moraines and without numerical age control. However, applications of Quaternary dating techniques such as terrestrial cosmogenic nuclide dating have allowed researchers to determine numerical ages for these young moraines and clarify when glacial maxima occurred. This paper reviews geochronological evidence for the last advance of glaciers in the Himalaya. The 66 ages younger than 2000 years (0–2000 CE) calculated from 138 samples collected from glacial landforms demonstrate that peak moraine building occurred between 1300 and 1600 CE, slightly earlier than the coldest period of Northern Hemisphere air temperatures. The timing of LIA advances varied spatially, likely influenced by variations in topography and meteorology across and along the mountain range. Palaeoclimate proxies indicate cooling air temperatures from 1300 CE leading to a southward shift in the Asian monsoon, increased Westerly winter precipitation and generally wetter conditions across the range around 1400 and 1800 CE. The last advance of glaciers in the Himalaya during a period of variable climate resulted from cold Northern Hemisphere air temperatures and was sustained by increased snowfall as atmospheric circulation reorganised in response to cooling during the LIA.


The Holocene ◽  
2018 ◽  
Vol 28 (7) ◽  
pp. 1041-1056 ◽  
Author(s):  
Henrik Løseth Jansen ◽  
Svein Olaf Dahl ◽  
Pål Ringkjøb Nielsen

The course of the ‘Little Ice Age’ (LIA) in Scandinavia is characterized by large glacier advances that started at about AD 1300 and culminated at about AD 1750. The end of the LIA is marked as an unprecedented and ongoing glacier retreat that accelerated from the early 20th century. The course of the LIA is here presented based on fluctuations of Austerdalsisen, the largest valley outlet glacier draining the Austre Svartisen (Østisen) ice cap, Nordland, northern Norway. During the LIA glacierization, Austerdalsisen separated into two branches, and relative to the present glacier terminus, a western valley glacier advanced more than 4 km, whereas a SE valley glacier advanced about 3 km. At present, meltwater from Austerdalsisen drains towards SE. If the glacier obtains a critical magnitude, however, most of the meltwater is drained westwards across a higher overflow gap. Based on radiocarbon-dated lake sediments, distal proglacial glaciolacustrine/glaciofluvial sediments and historical observations, the course and chronology of the deglaciation following the LIA glacier maximum at Austerdalsisen are established. Because of high sedimentation rates due to low local bedrock resistance to glacier erosion beneath Austerdalsisen, however, cores from distal glacier-fed lakes covering the entire LIA/Holocene are hard to retrieve. Hence, an inverse approach to reconstruct the entire course of the LIA glacierization at Austerdalsisen is performed by suggesting little input of glacier-meltwater-induced sediments to the SE distal glacier-fed lake Litl Røvatnet, whenever Austerdalsisen rerouted meltwater westwards. If the terminus of Austerdalsisen was near the critical magnitude threshold, regular glacier lake outburst floods (GLOFs) towards SE occurred.


2021 ◽  
Author(s):  
Bethan Davies ◽  
Jacob Bendle ◽  
Robert McNabb ◽  
Jonathan Carrivick ◽  
Christopher McNeil ◽  
...  

&lt;p&gt;The Alaskan region (comprising glaciers in Alaska, British Columbia and Yukon) contains the third largest ice volume outside of the Greenland and Antarctic ice sheets, and contributes more to global sea level rise than any other glacierised region defined by the Randolph Glacier Inventory. However, ice loss in this area is not linear, but in part controlled by glacier hypsometry as valley and outlet glaciers are at risk of becoming detached from their accumulation areas during thinning. Plateau icefields, such as Juneau Icefield in Alaska, are very sensitive to changes in Equilibrium Line Altitude (ELA) as this can result in rapidly shrinking accumulation areas. Here, we present detailed geomorphological mapping around Juneau Icefield and use this data to reconstruct the icefield during the &amp;#8220;Little Ice Age&amp;#8221;. We use topographic maps, archival aerial photographs, high-resolution satellite imagery and digital elevation models to map glacier lake and glacier area and volume change from the Little Ice Age to the present day (1770, 1948, 1979, 1990, 2005, 2015 and 2019 AD). Structural glaciological mapping (1979 and 2019) highlights structural and topographic controls on non-linear glacier recession.&amp;#160; Our data shows pronounced glacier thinning and recession in response to widespread detachment of outlet glaciers from their plateau accumulation areas. Glacier detachments became common after 2005, and occurred with increasing frequency since then. Total summed rates of area change increased eightfold from 1770-1948 (-6.14 km&lt;sup&gt;2&lt;/sup&gt; a&lt;sup&gt;-1&lt;/sup&gt;) to 2015-2019 (-45.23 km&lt;sup&gt;2&lt;/sup&gt; a&lt;sup&gt;-1&lt;/sup&gt;). Total rates of recession were consistent from 1770 to 1990 AD, and grew increasingly rapid after 2005, in line with regional warming.&lt;/p&gt;


2020 ◽  
Author(s):  
Joshua Leigh ◽  
Chris Stokes ◽  
David Evans ◽  
Rachel Carr ◽  
Liss Andreassen

&lt;p&gt;Glaciers are important indicators of climate change and observations worldwide document increasing rates of mountain glacier recession. Here we present ~200 years of change in mountain glacier extent in northern Troms and western Finnmark. This was achieved through: (1) mapping recent (post-1980s) changes in ice extent from remotely sensed data and (2) lichenometric dating and mapping of major moraine systems within a sub-set of the main study area (the Rotsund Valley). Lichenometric dating reveals that the Little Ice Age (LIA) maximum occurred as early as AD 1814 (&amp;#177;41 years), which is before the early-20th century LIA maximum proposed on the nearby Lyngen Peninsula, but younger than the LIA maximum limits in southern and central Norway (ca. AD 1740-50). Between LIA maximum and AD 1989, the reconstructed glaciers (n = 15) shrank by 3.9 km&lt;sup&gt;2&lt;/sup&gt; (39%), with those that shrank by &gt;50% fronted by proglacial lakes. Between AD 1989 and 2018, the total area of glaciers within the study area (n = 219 in AD 1989) shrank by ~35 km&lt;sup&gt;2&lt;/sup&gt;. Very small glaciers (&lt;0.5 km&lt;sup&gt;2&lt;/sup&gt; in AD 1989) show the highest relative rates of shrinkage, and 90% of mapped glaciers within the study area are &lt;0.5 km&lt;sup&gt;2&lt;/sup&gt; as of AD 2018.&lt;/p&gt;


2014 ◽  
Vol 55 (66) ◽  
pp. 167-176 ◽  
Author(s):  
E.Yu. Osipov ◽  
O.P. Osipova

AbstractContemporary glaciers of southeast Siberia are located on three high-mountain ridges (east Sayan, Baikalsky and Kodar). In this study, we present an updated glacier inventory based on high- to middle-resolution satellite imagery and field investigations. The inventory includes 51 glaciers with a total area of - 15 km2. Areas of individual glaciers vary from 0.06 to 1.33 km2, lengths from 130 to 2010 m and elevations from 1796 to 3490 m. The recent ice maximum extents (Little Ice Age) have been delineated from terminal moraines. On average, debris-free surface area shrunk by 59% between 1850 and 2006/11 (0.37% a–1), by 44% between 1850 and 2001/02 (0.29% a–1) and by 27% between 2001/02 and 2006/11 (3.39% a–1). The Kodar glaciers have experienced the largest area shrinkage, while the area loss on Baikalsky ridge was more moderate. Glacier changes are mainly related to regional summer temperature increase (by 1.7-2.6C from 1970 to 2010). There are some differences in glacier response due to different spatial patterns of snow accumulation, local topography (e.g. glacier elevation, slope) and geological activity. The studied glaciers (especially of Kodar ridge) are the most sensitive in Siberia to climate change since the late 20th century.


2006 ◽  
Vol 30 (3) ◽  
pp. 285-306 ◽  
Author(s):  
Roger G. Barry

Mountain glaciers are key indicators of climate change, although the climatic variables involved differ regionally and temporally. Nevertheless, there has been substantial glacier retreat since the Little Ice Age and this has accelerated over the last two to three decades. Documenting these changes is hampered by the paucity of observational data. This review outlines the measurements that are available, new techniques that incorporate remotely sensed data, and major findings around the world. The focus is on changes in glacier area, rather than estimates of mass balance and volume changes that address the role of glacier melt in global sea-level rise. The glacier observations needed for global climate monitoring are also outlined.


2002 ◽  
Vol 48 (160) ◽  
pp. 118-124 ◽  
Author(s):  
Louis Lliboutry

AbstractGlacier de Saint-Sorlin, French Alps, left terminal moraines at 1.3, 2.9 and 3.7 km ahead of the present terminus. According to proxy data and to historical maps, these were formed in the 19th, 18th and 17th centuries, respectively. A plateau at 2700–2625 m was then surrounded by ice but never became an accumulation area. This fact shows that the equilibrium-line altitude (ELA) on the glacier never dropped below 2300 m. The following simple models apply sufficiently to yield reliable estimations of past ELA: (1) a uniform and constant vertical gradient of the mass balance, down to the terminus; and (2) a plane bed, with a slope of 8.5° and a uniform width. Then in a steady situation the accumulation–area ratio is 1/2. Compared to the mean for 1956–72, at the onset of the Little Ice Age the balances were higher by 3.75 m ice a−1, and the ELA was 400 m lower. Correlations between 1956–72 balances and meteorological data suggest that during the melting season the 0°C isotherm was about 800 m lower, while the winter precipitation at low altitudes did not change. These correlations may have been different in the past, but an equal lowering of the ELA and of the 0°C isotherm, as assumed by several authors, seems excluded.


2017 ◽  
Author(s):  
Stephan Harrison ◽  
Jeffrey S. Kargel ◽  
Christian Huggel ◽  
John Reynolds ◽  
Dan H. Shugar ◽  
...  

Abstract. Despite recent research identifying a clear anthropogenic impact on glacier recession, the effect of recent climate change on glacier-related hazards is at present unclear. Here we present the first global spatio-temporal assessment of glacial lake outburst floods (GLOFs) focusing explicitly on lake drainage following moraine dam failure. These floods occur as mountain glaciers recede and downwaste and many have an enormous impact on downstream communities and infrastructure. Our assessment of GLOFs associated with the collapse of moraine-dammed lakes provides insights into the historical trends of GLOFs and their distributions under current and future global climate change. We observe a clear global increase in GLOF frequency and their regularity around 1930, which likely represents a lagged response to post-Little Ice Age warming. Notably, we also show that GLOF frequency and their regularity – rather unexpectedly – has declined in recent decades even during a time of rapid glacier recession. Although previous studies have suggested that GLOFs will increase in response to climate warming and glacier recession, our global results demonstrate that this has not yet clearly happened. From assessment of the timing of climate forcing, lag times in glacier recession, lake formation and moraine dam failure, we predict increased GLOF frequencies during the next decades and into the 22nd century.


Sign in / Sign up

Export Citation Format

Share Document