A Ground-Motion Logic-Tree Scheme for Regional Seismic Hazard Studies

2017 ◽  
Vol 33 (3) ◽  
pp. 837-856 ◽  
Author(s):  
Özkan Kale ◽  
Sinan Akkar

We propose a methodology that can be useful to the hazard expert in building ground-motion logic trees to capture the center and range of ground-motion amplitudes. The methodology can be used to identify a logic-tree structure and weighting scheme that prevents the dominancy of a specific ground-motion model. This strategy can be useful for regional probabilistic seismic hazard since logic-trees biased by a specific ground-motion predictive model (GMPE) may cause disparities in the seismic hazard for regions represented by large number of sites with complex seismic features. The methodology first identifies a suit of candidate ground-motion prediction equations that can cover the center, body and range of estimated ground motions. The GMPE set is then used for establishing alternative logic-trees composed of different weighting schemes to identify the one(s) that would not be biased towards a particular GMPE due to its sensitivity to the weights. The proposed methodology utilizes visual and statistical tools to assess the ground motion distributions over large areas that makes it more practical for regional hazard studies.

2020 ◽  
Author(s):  
Harris Kkallas ◽  
Costas Papazachos ◽  
Dominikos Vamvakaris

<p>We have used a stochastic approach to simulate a large number of scenarios for in-slab intermediate-depth earthquakes in the southern Aegean Sea Hellenic subduction region, by applying an extended-source model using the EXSIM code. A large database of synthetic ground motion recordings for events with magnitudes in the range <strong>M</strong>6.0-8.5 has been compiled, covering the whole southern Aegean Benioff zone. For the stochastic simulations, we followed the approach developed in our previous works (Kkallas et al., 2018a,b), where we used the anelastic attenuation from the GMPEs modeling developed by Skarlatoudis et al. (2013) to constrain the different attenuation patterns and properties for the back-arc and fore-arc area. Simulation model parameters, such as stress parameters and attenuation parameters were also adopted from previous works, while for fault parameters we adopted the typical average focal mechanisms proposed by Papazachos et al. (2000), in agreement with the regional subduction tectonics. Estimates of expected ground motion measurements (PGA and PGV values) at different distances from different earthquakes have been employed to generate hybrid Ground-Motion Prediction Equations (GMPE). More specifically, we attempt to modify the existing Ground-Motion Prediction Equations (GMPE) from Skarlatoudis et al. (2013) for intermediate-depth earthquakes along the Hellenic Arc for large magnitude events (<strong>M</strong>>6.5), so that they can be efficiently used for Seismic Hazard assessment, as the original strong-motion dataset used for their development was lacking data in this magnitude range. Peak ground accelerations and velocities predicted by the EXSIM code are generally in very good agreement with the available GMPE results for magnitudes less than <strong>M</strong>7. However, significantly lower ground motions than those predicted by the GMPEs are predicted for large-magnitude events (<strong>M</strong>>7). Using the previous results, we propose a magnitude-dependent correction for the GMPE results both back-arc and along-arc ground motions. Moreover, we demonstrate how the final earthquake ground motion scenarios, as well as the modified GMPEs affect both deterministic and probabilistic seismic hazard analysis. This work has been partly supported by the HELPOS (MIS 5002697) project.</p>


2017 ◽  
Vol 43 (4) ◽  
pp. 2163
Author(s):  
M. Segou ◽  
N. Voulgaris ◽  
K. Makropoulos

Ground motion prediction equations, widely known as attenuation relations, are common input for probabilistic and deterministic seismic hazard studies. The construction of a ground motion model to describe such a complex phenomenon as the effects of seismic wave propagation is highly dependable on a number of parameters. The quality and the distribution of strong motion data, which is the original input for the calculation of any ground motion model, can be thought as one of the main parameters that heavily influence the form of ground motion prediction equations. The selected processing scheme, involving significant choices about a series of adjustments and filter specifications, implemented to remove low and high frequency noise, is related with the credibility of the calculated ground motion parameters such as the spectral ordinates. Once a set of response variables for a number of predictors is available, the researcher’s interest is related with the mathematical definition of the ground motion model, in terms of selecting the appropriate parameters and the determination of their coefficients of the equation. Another significant part involves the selection of the optimum solver in order to achieve high confidence level coefficients and a computationally inexpensive solution. Each method should be evaluated through statistics but the researcher should bear in mind that residual analysis and statistical errors, although they can adequately represent the efficiency of the mathematical equations, do not always provide information about where our efforts should lie in terms of further improvement. The scope of this paper is to point out the multi-parametric nature of the construction of ground motion prediction equations and how each of the aforementioned development stages influences the credibility of the proposed attenuation relations.


2021 ◽  
pp. 875529302110039
Author(s):  
Filippos Filippitzis ◽  
Monica D Kohler ◽  
Thomas H Heaton ◽  
Robert W Graves ◽  
Robert W Clayton ◽  
...  

We study ground-motion response in urban Los Angeles during the two largest events (M7.1 and M6.4) of the 2019 Ridgecrest earthquake sequence using recordings from multiple regional seismic networks as well as a subset of 350 stations from the much denser Community Seismic Network. In the first part of our study, we examine the observed response spectral (pseudo) accelerations for a selection of periods of engineering significance (1, 3, 6, and 8 s). Significant ground-motion amplification is present and reproducible between the two events. For the longer periods, coherent spectral acceleration patterns are visible throughout the Los Angeles Basin, while for the shorter periods, the motions are less spatially coherent. However, coherence is still observable at smaller length scales due to the high spatial density of the measurements. Examining possible correlations of the computed response spectral accelerations with basement depth and Vs30, we find the correlations to be stronger for the longer periods. In the second part of the study, we test the performance of two state-of-the-art methods for estimating ground motions for the largest event of the Ridgecrest earthquake sequence, namely three-dimensional (3D) finite-difference simulations and ground motion prediction equations. For the simulations, we are interested in the performance of the two Southern California Earthquake Center 3D community velocity models (CVM-S and CVM-H). For the ground motion prediction equations, we consider four of the 2014 Next Generation Attenuation-West2 Project equations. For some cases, the methods match the observations reasonably well; however, neither approach is able to reproduce the specific locations of the maximum response spectral accelerations or match the details of the observed amplification patterns.


2020 ◽  
Vol 36 (1_suppl) ◽  
pp. 137-159
Author(s):  
Chung-Han Chan ◽  
Kuo-Fong Ma ◽  
J Bruce H Shyu ◽  
Ya-Ting Lee ◽  
Yu-Ju Wang ◽  
...  

The Taiwan Earthquake Model (TEM) published the first version of the Taiwan probabilistic seismic hazard assessment (named TEM PSHA2015) 5 years ago. For updating to the TEM PSHA2020, we considered an updated seismogenic structure database, including the structures newly identified with 3D geometry, an earthquake catalog made current to 2016, state-of-the-art seismic models, a new set of ground motion prediction equations, and site amplification factors. In addition to earthquakes taking place on each individual seismogenic structure, the updated seismic model included the possibility of an earthquake occurring on multiple structures. To include fault memory for illustrating activity on seismogenic structure sources, we incorporated the Brownian passage time model. For the crustal seismicity that cannot be attributed to any specific structure, we implemented both area source and smoothing kernel models. A new set of ground motion prediction equations is incorporated. In addition to the calculation of hazard at engineering bedrock, our assessment included site amplification factors that competent authorities of governments and private companies could use to implement hazard prevention and reduction strategies.


2016 ◽  
Vol 59 ◽  
Author(s):  
Maura Murru ◽  
Matteo Taroni ◽  
Aybige Akinci ◽  
Giuseppe Falcone

<p>The recent Amatrice strong event (M<sub>w</sub>6.0) occurred on August 24, 2016 in Central Apennines (Italy) in a seismic gap zone, motivated us to study and provide better understanding of the seismic hazard assessment in the macro area defined as “Central Italy”. The area affected by the sequence is placed between the M<sub>w</sub>6.0 1997 Colfiorito sequence to the north (Umbria-Marche region) the Campotosto area hit by the 2009 L’Aquila sequence M<sub>w</sub>6.3 (Abruzzo region) to the south. The Amatrice earthquake occurred while there was an ongoing effort to update the 2004 seismic hazard map (MPS04) for the Italian territory, requested in 2015 by the Italian Civil Protection Agency to the Center for Seismic Hazard (CPS) of the Istituto Nazionale di Geofisica e Vulcanologia INGV. Therefore, in this study we brought to our attention new earthquake source data and recently developed ground-motion prediction equations (GMPEs). Our aim was to validate whether the seismic hazard assessment in this area has changed with respect to 2004, year in which the MPS04 map was released. In order to understand the impact of the recent earthquakes on the seismic hazard assessment in central Italy we compared the annual seismic rates calculated using a smoothed seismicity approach over two different periods; the Parametric Catalog of the Historical Italian earthquakes (CPTI15) from 1871 to 2003 and the historical and instrumental catalogs from 1871 up to 31 August 2016. Results are presented also in terms of peak ground acceleration (PGA), using the recent ground-motion prediction equations (GMPEs) at Amatrice, interested by the 2016 sequence.</p>


Sign in / Sign up

Export Citation Format

Share Document