Vertical Ground Motion Model for PGA, PGV, and Linear Response Spectra Using the NGA-West2 Database

2016 ◽  
Vol 32 (2) ◽  
pp. 979-1004 ◽  
Author(s):  
Yousef Bozorgnia ◽  
Kenneth W. Campbell

We summarize the development of the NGA-West2 Bozorgnia-Campbell empirical ground motion model (GMM) for the vertical components of peak ground acceleration (PGA), peak ground velocity (PGV), and 5%-damped elastic pseudo-absolute acceleration response spectra (PSA) at vertical periods ranging from 0.01 s to 10 s. In the development of the vertical GMM, similar to our 2014 horizontal GMM, we used the extensive PEER NGA-West2 worldwide database. We consider our new vertical GMM to be valid for shallow crustal earthquakes in active tectonic regions for magnitudes ranging from 3.3 to 7.5–8.5, depending on the style of faulting, and for distances as far as 300 km from the fault.

2016 ◽  
Vol 32 (2) ◽  
pp. 951-978 ◽  
Author(s):  
Yousef Bozorgnia ◽  
Kenneth W. Campbell

We present a ground motion model (GMM) for the vertical-to-horizontal (V/H) ratios of peak ground acceleration, peak ground velocity, and 5%-damped pseudo-acceleration response spectra at periods ranging from 0.01 s to 10 s. The V/H GMM includes formulations for the median V/H ratio and for the aleatory within-event, between-event, and total standard deviations. The V/H model is based on the GMMs we have developed for the vertical and “average” horizontal components of ground motion using a mathematical formation that accounts for the correlation between these two components. We validated the V/H model against the NGA-West2 empirical database. We consider our V/H model to be valid for worldwide shallow crustal earthquakes in active tectonic regions for moment magnitudes ranging from 3.3 to 8.5, depending on the style of faulting, and for fault rupture distances ranging from 0 km to 300 km. Our V/H model incorporates period-dependent effects of magnitude saturation, style of faulting, hypocentral depth, fault-rupture dip, geometric attenuation, regionally dependent anelastic attenuation and site response, hanging-wall geometry, and magnitude-dependent between-event and within-event aleatory variabilities. The V/H ratios predicted from the model show a strong dependence on spectral period and site response.


Author(s):  
Trevor I. Allen

ABSTRACT The Australian territory is just over 400 km from an active convergent plate margin with the collision of the Sunda–Banda Arc with the Precambrian and Palaeozoic Australian continental crust. Seismic energy from earthquakes in the northern Australian plate-margin region are channeled efficiently through the low-attenuation North Australian craton (NAC), with moderate-sized (Mw≥5.0) earthquakes in the Banda Sea commonly felt in northern Australia. A far-field ground-motion model (GMM) has been developed for use in seismic hazard studies for sites located within the NAC. The model is applicable for hypocentral distances of approximately 500–1500 km and magnitudes up to Mw 8.0. The GMM provides coefficients for peak ground acceleration, peak ground velocity, and 5%-damped pseudospectral acceleration at 20 oscillator periods from 0.1 to 10 s. A strong hypocentral depth dependence is observed in empirical data, with earthquakes occurring at depths of 100–200 km demonstrating larger amplitudes for short-period ground motions than events with shallower hypocenters. The depth dependence of ground motion diminishes with longer spectral periods, suggesting that the relatively larger ground motions for deeper earthquake hypocenters may be due to more compact ruptures producing higher stress drops at depth. Compared with the mean Next Generation Attenuation-East GMM developed for the central and eastern United States (which is applicable for a similar distance range), the NAC GMM demonstrates significantly higher short-period ground motion for Banda Sea events, transitioning to lower relative accelerations for longer period ground motions.


1995 ◽  
Vol 85 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Gail M. Atkinson ◽  
David M. Boore

Abstract Predictive relations are developed for ground motions from eastern North American earthquakes of 4.0 ≦ M ≦ 7.25 at distances of 10 ≦ R ≦ 500 km. The predicted parameters are response spectra at frequencies of 0.5 to 20 Hz, and peak ground acceleration and velocity. The predictions are derived from an empirically based stochastic ground-motion model. The relations differ from previous work in the improved empirical definition of input parameters and empirical validation of results. The relations are in demonstrable agreement with ground motions from earthquakes of M 4 to 5. There are insufficient data to adequately judge the relations at larger magnitudes, although they are consistent with data from the Saguenay (M 5.8) and Nahanni (M 6.8) earthquakes. The underlying model parameters are constrained by empirical data for events as large as M 6.8.


2014 ◽  
Vol 30 (3) ◽  
pp. 1117-1153 ◽  
Author(s):  
Brian S.-J. Chiou ◽  
Robert R. Youngs

We present an update to our 2008 NGA model for predicting horizontal ground motion amplitudes caused by shallow crustal earthquakes occurring in active tectonic environments. The update is based on analysis of the greatly expanded NGA-West2 ground motion database and numerical simulations. The updated model contains minor adjustments to our 2008 functional form related to style of faulting effects, hanging wall effects, scaling with the depth to top of rupture, scaling with sediment thickness, and the inclusion of additional terms for the effects of fault dip and rupture directivity. In addition, we incorporate regional differences in far-source distance attenuation and site effects between California and other active tectonic regions. Compared to our 2008 NGA model, the predicted medians by the updated model are similar for M > 7 and are lower for M < 5. The aleatory variability is larger than that obtained in our 2008 model.


2008 ◽  
Vol 24 (1) ◽  
pp. 139-171 ◽  
Author(s):  
Kenneth W. Campbell ◽  
Yousef Bozorgnia

We present a new empirical ground motion model for PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01–10 s. The model was developed as part of the PEER Next Generation Attenuation (NGA) project. We used a subset of the PEER NGA database for which we excluded recordings and earthquakes that were believed to be inappropriate for estimating free-field ground motions from shallow earthquake mainshocks in active tectonic regimes. We developed relations for both the median and standard deviation of the geometric mean horizontal component of ground motion that we consider to be valid for magnitudes ranging from 4.0 up to 7.5–8.5 (depending on fault mechanism) and distances ranging from 0–200 km. The model explicitly includes the effects of magnitude saturation, magnitude-dependent attenuation, style of faulting, rupture depth, hanging-wall geometry, linear and nonlinear site response, 3-D basin response, and inter-event and intra-event variability. Soil nonlinearity causes the intra-event standard deviation to depend on the amplitude of PGA on reference rock rather than on magnitude, which leads to a decrease in aleatory uncertainty at high levels of ground shaking for sites located on soil.


2012 ◽  
Vol 28 (1) ◽  
pp. 17-35 ◽  
Author(s):  
Brendon A. Bradley

Empirical correlation equations between peak ground velocity ( PGV) and several spectrum-based ground motion intensity measures are developed. The intensity measures examined in particular were: peak ground acceleration ( PGA), 5% damped pseudo-spectral acceleration ( SA), acceleration spectrum intensity ( ASI), and spectrum intensity ( SI). The computed correlations were obtained using ground motions from active shallow crustal earthquakes and four ground motion prediction equations. Results indicate that PGV is strongly correlated (i.e., a correlation coefficient of [Formula: see text]) with SI, moderately correlated with medium to long-period SA (i.e., [Formula: see text] for vibration periods 0.5-3.0 seconds), and also moderately correlated with short period SA, PGA and ASI ([Formula: see text]). A simple example is used to illustrate one possible application of the developed correlation equations for ground motion selection.


2020 ◽  
Vol 18 (9) ◽  
pp. 4091-4125 ◽  
Author(s):  
Sreeram Reddy Kotha ◽  
Graeme Weatherill ◽  
Dino Bindi ◽  
Fabrice Cotton

Sign in / Sign up

Export Citation Format

Share Document