scholarly journals Cholesterol transport between red blood cells and lipoproteins contributes to cholesterol metabolism in blood

2020 ◽  
Vol 61 (12) ◽  
pp. 1577-1588
Author(s):  
Ryunosuke Ohkawa ◽  
Hann Low ◽  
Nigora Mukhamedova ◽  
Ying Fu ◽  
Shao-Jui Lai ◽  
...  

Lipoproteins play a key role in transport of cholesterol to and from tissues. Recent studies have also demonstrated that red blood cells (RBCs), which carry large quantities of free cholesterol in their membrane, play an important role in reverse cholesterol transport. However, the exact role of RBCs in systemic cholesterol metabolism is poorly understood. RBCs were incubated with autologous plasma or isolated lipoproteins resulting in a significant net amount of cholesterol moved from RBCs to HDL, while cholesterol from LDL moved in the opposite direction. Furthermore, the bi-directional cholesterol transport between RBCs and plasma lipoproteins was saturable and temperature-, energy-, and time-dependent, consistent with an active process. We did not find LDLR, ABCG1, or scavenger receptor class B type 1 in RBCs but found a substantial amount of ABCA1 mRNA and protein. However, specific cholesterol efflux from RBCs to isolated apoA-I was negligible, and ABCA1 silencing with siRNA or inhibition with vanadate and Probucol did not inhibit the efflux to apoA-I, HDL, or plasma. Cholesterol efflux from and cholesterol uptake by RBCs from Abca1+/+ and Abca1−/− mice were similar, arguing against the role of ABCA1 in cholesterol flux between RBCs and lipoproteins. Bioinformatics analysis identified ABCA7, ABCG5, lipoprotein lipase, and mitochondrial translocator protein as possible candidates that may mediate the cholesterol flux. Together, these results suggest that RBCs actively participate in cholesterol transport in the blood, but the role of cholesterol transporters in RBCs remains uncertain.

2019 ◽  
Vol 400 (12) ◽  
pp. 1593-1602 ◽  
Author(s):  
Shao-Jui Lai ◽  
Ryunosuke Ohkawa ◽  
Yuna Horiuchi ◽  
Tetsuo Kubota ◽  
Minoru Tozuka

Abstract High-density lipoprotein (HDL) plays a main role in reverse cholesterol transport (RCT), one of the most important functions for preventing atherosclerosis. Recent reports have shown that red blood cells (RBCs) can be associated with RCT, an interaction facilitated by albumin. However, the RCT function of RBCs has not been thoroughly elucidated. In this study, the RCT function of RBCs was assessed using cholesterol efflux capacity (CEC) assays, in which [3H]-labeled cholesterol-loaded human acute monocytic leukemia (THP-1) macrophages were incubated with RBCs as a cholesterol acceptor in the presence or absence of HDL or its main component protein apolipoprotein A-I (apoA-I). The CEC of RBCs was found to be dose dependent, enabling uptake of cholesterol from THP-1 macrophages through apoA-I and HDL, and directly from apoA-I and HDL in medium without the presence THP-1 macrophages. Moreover, RBCs could exchange cholesterol with HDL in a bidirectional manner but could only exchange cholesterol with apoA-I in a single direction. Although albumin promoted the movement of cholesterol, synergistic effects were not observed for both apoA-I and HDL, in contrast to previous findings. These results strongly suggested that RBCs may play important roles in RCT by mediating cholesterol efflux as temporary cholesterol storage.


2018 ◽  
Vol 96 (1) ◽  
pp. 8-17 ◽  
Author(s):  
Xuemeng Chen ◽  
Kun Tang ◽  
Yi Peng ◽  
XiaoLe Xu

The aim of this study was to evaluate the potential effects of 2,3,4′,5-tetrahydroxystilbene-2-O-β-d-glucoside (TSG) on the development of atherosclerotic plaque in ApoE−/− mice, and explore the mechanisms involved. Our data showed that after 8 weeks of treatment, TSG ameliorated serum levels of total cholesterol, triglyceride, and low density lipoprotein cholesterol, and increased serum levels of high density lipoprotein cholesterol in ApoE−/− mice. TSG suppressed hepatic steatosis, the formation of atherosclerotic lesions, and the formation of macrophage foam cells in ApoE−/− mice. Moreover, TSG improved the expressions of hepatic SR-BI, ABCG5, and CYP7A1, and up-regulated the protein expressions of aortic ABCA1 and ABCG1. An in-vitro study showed that TSG promoted macrophage cholesterol efflux and increased the protein expressions of ABCA1 and ABCG1. Our findings provide evidence for a positive role of TSG in preventing atherosclerosis by promoting reverse cholesterol transport. These effects may be achieved by stimulating cholesterol efflux through ABCA1 and ABCG1, promoting SR-BI-mediated cholesterol uptake in the liver, increasing secretion of cholesterol into bile by ABCG5, and improving cholesterol metabolism by the CYP7A1 pathway. In addition, antioxidative and anti-inflammatory effects of TSG may also contribute to its inhibitory effects on atherosclerosis. Further study is needed to investigate whether other potential mechanisms are involved in TSG-mediated atheroprotection.


Hematology ◽  
2007 ◽  
Vol 2007 (1) ◽  
pp. 84-90 ◽  
Author(s):  
Marilyn J. Telen

AbstractA number of lines of evidence now support the hypothesis that vaso-occlusion and several of the sequelae of sickle cell disease (SCD) arise, at least in part, from adhesive interactions of sickle red blood cells, leukocytes, and the endothelium. Both experimental and genetic evidence provide support for the importance of these interactions. It is likely that future therapies for SCD might target one or more of these interactions.


Anemia ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Erwin Weiss ◽  
David Charles Rees ◽  
John Stanley Gibson

Phosphatidylserine exposure occurs in red blood cells (RBCs) from sickle cell disease (SCD) patients and is increased by deoxygenation. The mechanisms responsible remain unclear. RBCs from SCD patients also have elevated cation permeability, and, in particular, a deoxygenation-induced cation conductance which mediates entry, providing an obvious link with phosphatidylserine exposure. The role of was investigated using FITC-labelled annexin. Results confirmed high phosphatidylserine exposure in RBCs from SCD patients increasing upon deoxygenation. When deoxygenated, phosphatidylserine exposure was further elevated as extracellular [] was increased. This effect was inhibited by dipyridamole, intracellular chelation, and Gardos channel inhibition. Phosphatidylserine exposure was reduced in high saline. levels required to elicit phosphatidylserine exposure were in the low micromolar range. Findings are consistent with entry through the deoxygenation-induced pathway (), activating the Gardos channel. [] required for phosphatidylserine scrambling are in the range achievablein vivo.


2012 ◽  
Vol 32 (6) ◽  
pp. 1460-1465 ◽  
Author(s):  
Kimberly T. Hung ◽  
Stela Z. Berisha ◽  
Brian M. Ritchey ◽  
Jennifer Santore ◽  
Jonathan D. Smith

2010 ◽  
Vol 142 (1) ◽  
pp. 2-7 ◽  
Author(s):  
Dimitrios N. Tziakas ◽  
Georgios K. Chalikias ◽  
Dimitrios Stakos ◽  
Harisios Boudoulas

Sign in / Sign up

Export Citation Format

Share Document