Phagocytosis of Phenylhydrazine Oxidized and G-6-PD Deficient Red Blood Cells: The Role of Sugars and Cell-Bound Immunoglobulins

Author(s):  
Sara Horn ◽  
Nava Bashan ◽  
Shimon Moses ◽  
Jacob Gopas
Keyword(s):  
Hematology ◽  
2007 ◽  
Vol 2007 (1) ◽  
pp. 84-90 ◽  
Author(s):  
Marilyn J. Telen

AbstractA number of lines of evidence now support the hypothesis that vaso-occlusion and several of the sequelae of sickle cell disease (SCD) arise, at least in part, from adhesive interactions of sickle red blood cells, leukocytes, and the endothelium. Both experimental and genetic evidence provide support for the importance of these interactions. It is likely that future therapies for SCD might target one or more of these interactions.


Anemia ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Erwin Weiss ◽  
David Charles Rees ◽  
John Stanley Gibson

Phosphatidylserine exposure occurs in red blood cells (RBCs) from sickle cell disease (SCD) patients and is increased by deoxygenation. The mechanisms responsible remain unclear. RBCs from SCD patients also have elevated cation permeability, and, in particular, a deoxygenation-induced cation conductance which mediates entry, providing an obvious link with phosphatidylserine exposure. The role of was investigated using FITC-labelled annexin. Results confirmed high phosphatidylserine exposure in RBCs from SCD patients increasing upon deoxygenation. When deoxygenated, phosphatidylserine exposure was further elevated as extracellular [] was increased. This effect was inhibited by dipyridamole, intracellular chelation, and Gardos channel inhibition. Phosphatidylserine exposure was reduced in high saline. levels required to elicit phosphatidylserine exposure were in the low micromolar range. Findings are consistent with entry through the deoxygenation-induced pathway (), activating the Gardos channel. [] required for phosphatidylserine scrambling are in the range achievablein vivo.


2010 ◽  
Vol 142 (1) ◽  
pp. 2-7 ◽  
Author(s):  
Dimitrios N. Tziakas ◽  
Georgios K. Chalikias ◽  
Dimitrios Stakos ◽  
Harisios Boudoulas

1978 ◽  
Vol 45 (1) ◽  
pp. 7-10 ◽  
Author(s):  
H. Bard ◽  
J. C. Fouron ◽  
J. E. Robillard ◽  
A. Cornet ◽  
M. A. Soukini

Studies were carried out during fetal life in sheep to determine the relationship of 2,3-diphosphoglycerate (DPG), the intracellular red cell and extracellular pH, and the switchover to adult hemoglobin synthesis in regulating the position of the fetal red cell oxygen-affinity curve in utero. Adult hemoglobin first appeared near 120 days of gestation. The mean oxygen tension at which hemoglobin is half saturated (P50) prior to 120 days of gestation remained constant at 13.9 +/- 0.3 (SD) Torr and then increased gradually as gestation continued, reaching 19 Torr at term. During the interval of fetal life studied, the level of DPG was 4.43 +/- 1.63 (SD) micromol/g Hb and the deltapH between plasma and red blood cells was 0.227 +/- 0.038 (SD); neither was affected by gestational age. The decrease in the red cell oxygen affinity after 120 days of gestation ocrrelated with the amount of adult hemoglobin present in the fetus (r = 0.78; P less than 0.001). This decrease can be attributed only to the amount of the adult-type hemoglobin present, and not to DPG, or to changes in the deltapH between plasma and red blood cells, because both remained stable during the last trimester.


1974 ◽  
Vol 29 (9-10) ◽  
pp. 510-515 ◽  
Author(s):  
W Helfrich

Abstract The role of lipid exchange in the curvature elasticity of bilayers is studied theoretically. Blocking of exchange between the monolayers may give rise to a nonequilibrium lipid distribution going hand in hand with a spontaneous curvature. Some possible consequences for vesicular deformations are discussed. Lipid nonequilibrium is tentatively suggest as one possible cause for certain shape transformations of red blood cells


2017 ◽  
Vol 117 (07) ◽  
pp. 1402-1411 ◽  
Author(s):  
Laura Beth Mann Dosier ◽  
Vikram J. Premkumar ◽  
Hongmei Zhu ◽  
Izzet Akosman ◽  
Michael F. Wempe ◽  
...  

SummaryThe system L neutral amino acid transporter (LAT; LAT1, LAT2, LAT3, or LAT4) has multiple functions in human biology, including the cellular import of S-nitrosothiols (SNOs), biologically active derivatives of nitric oxide (NO). SNO formation by haemoglobin within red blood cells (RBC) has been studied, but the conduit whereby a SNO leaves the RBC remains unidentified. Here we hypothesised that SNO export by RBCs may also depend on LAT activity, and investigated the role of RBC LAT in modulating SNO-sensitive RBC-endothelial cell (EC) adhesion. We used multiple pharmacologic inhibitors of LAT in vitro and in vivo to test the role of LAT in SNO export from RBCs and in thereby modulating RBC-EC adhesion. Inhibition of human RBC LAT by type-1-specific or nonspecific LAT antagonists increased RBC-endothelial adhesivity in vitro, and LAT inhibitors tended to increase post-transfusion RBC sequestration in the lung and decreased oxygenation in vivo. A LAT1-specific inhibitor attenuated SNO export from RBCs, and we demonstrated LAT1 in RBC membranes and LAT1 mRNA in reticulocytes. The proadhesive effects of inhibiting LAT1 could be overcome by supplemental L-CSNO (S-nitroso-L-cysteine), but not D-CSNO or L-Cys, and suggest a basal anti-adhesive role for stereospecific intercellular SNO transport. This study reveals for the first time a novel role of LAT1 in the export of SNOs from RBCs to prevent their adhesion to ECs. The findings have implications for the mechanisms of intercellular SNO signalling, and for thrombosis, sickle cell disease, and post-storage RBC transfusion, when RBC adhesivity is increased.


2021 ◽  
Vol 23 (1) ◽  
pp. 17-34
Author(s):  
P. S. Obukhova ◽  
A. V. Kachanov ◽  
N. A. Pozdnyakova ◽  
M. M. Ziganshina

The mother and fetus incompatibility due to Rh-factor, blood group or other blood factors can lead to hemolytic disease of the fetus and newborn (HDN). HDN is a clinical disease condition of the fetus and newborn as a result of hemolysis, when maternal IgG alloantibodies cross the placenta and destroy the red blood cells of the fetus and newborn. The child disease begins in utero and can dramatically increase immediately after birth. As a result, hyperbilirubinemia and anemia develop, that can lead to abortions, serious complications, or death of the neonates in the absence of proper therapy. The range of HDN has changed significantly now compared to previous decades. Half a century ago, HDN was considered an almost complete synonym of RhD-alloimmunization, and this was a frequent problem for newborns. By now due to the high effective of Rh-conflict prevention, immunological AB0-conflicts have become the most common cause of HDN. The review aimes to one of the main causes of jaundice and anemia in neonates at present, i.e. HDN due to immunological AB0-conflict of mother and newborn (AB0-HDN). The main participants of the AВ0- incompatibility mother and child are considered, namely A- and B-glycans, as well as the corresponding anti-glycan alloantibodies. Close attention is paid to the structure features of glycan alloantigens on the red blood cells of the fetus and adult. The possible correlation of the frequency and severity of HDN with the blood group of mother and child, as well as with the titer of maternal alloantibodies, has been considered. The influence of immunoglobulin G subclasses on the AB0-HDN development has been evaluated. In most cases, AB0-HDN appear when the mother has the blood group 0, and the fetus has the group A (subgroup A1) or the group B. Other rare incidences of AB0-incompatibility with severe course are occurred. As a whole the etiology of AB0-HDN is complex and the HDN severity is influenced by many factors. The authors have analyzed statistical data, as well as the prevalence of AB0-incompatibility and AB0-HDN in various regions of the world. Current approaches to the diagnosis of AB0-HDN are discussed in addition. By now the problems of AB0- HDN occurrence and developing of ways to overcome this disease remain relevant.


Sign in / Sign up

Export Citation Format

Share Document