Intensity-modulated radiation therapy (IMRT): Differences in target volumes and improvement in clinically relevant doses to small bowel in rectal carcinoma.

2011 ◽  
Vol 29 (4_suppl) ◽  
pp. 586-586
Author(s):  
H. Mok ◽  
C. H. Crane ◽  
T. Briere ◽  
S. Beddar ◽  
M. E. Delclos ◽  
...  

586 Background: In the treatment of rectal cancer, a strong dose-volume relationship exists between the amount of small bowel receiving low- to intermediate-doses of radiation and the rates of acute, severe gastrointestinal toxicity. Highly conformal treatment approaches, such as intensity-modulated radiation therapy (IMRT), may reduce dose to adjacent organs-at-risk (OAR). We performed a dosimetric evaluation of IMRT compared to 3-dimensional conformal radiation therapy (3DCRT) in standard, preoperative treatment for rectal cancer. Methods: Using RTOG consensus contouring atlas, treatment volumes were generated for ten patients treated preoperatively, with IMRT plans compared to 3DCRT plans derived from classic anatomic landmarks, as well as modified 3DCRT plans treating the RTOG consensus volume. The patients were all T3, were node-negative (N=1) or node–positive (N=9), and were planned to a total dose of 45-Gy. Bowel displacement was achieved using a carbon-fiber bellyboard apparatus with prone positioning. Results: IMRT plans had superior PTV coverage, dose homogeneity, and conformality in treatment of the gross disease and at-risk nodal volume, in comparison to 3DCRT. Additionally, in comparison to the modified 3DCRT plans, IMRT achieved a concomitant reduction in doses to the bowel, bladder, pelvic bones, and femoral heads, with an improvement in absolute volumes of small bowel receiving dose levels known to induce clinically-relevant acute toxicity. In the six patients with the highest volume of small bowel (range: 209-537-cc), the volume of bowel receiving 15-Gy was reduced from a median of 224-cc in the modified 3DCRT plans to 185-cc with IMRT. Also, the IMRT volumes were typically larger than that covered by classic 3DCRT fields, without incurring penalty with respect to adjacent OAR. Conclusions: For rectal carcinoma, IMRT, compared to 3DCRT, yielded plans with superior target coverage, homogeneity, and conformality, while lowering dose to adjacent OAR. This is despite treating larger volumes, raising the possibility of a clinically-relevant improvement in the therapeutic ratio through the use of IMRT with a belly-board apparatus. No significant financial relationships to disclose.

2002 ◽  
Vol 2 (4) ◽  
pp. 189-198 ◽  
Author(s):  
W. Laub ◽  
D. Yan ◽  
J. Robertson ◽  
A. Martinez

Small bowel toxicity due to radiotherapy treatment of rectal cancer is common. The potential use of intensity modulated radiation therapy (IMRT) to reduce the volume of small bowel irradiated during radiation therapy (RT) for cancer has previously been reported. However, IMRT treatment implementation is relatively difficult for these patients. The PTV is large and has a concave shape, with the small bowel in very close proximity. Therefore, the intensity profile calculated by an inverse planning engine could be highly modulated and complicated to deliver.In this study, two methods were used to optimise IMRT plans for rectal cancer patients. Scatter contribution when backprojecting dose values to fluence values and a smoothing function were only implemented in the optimisation searching of one method. A common arrangement of five beams, each separated by equal gantry angle, was adopted. With both methods used, the dose coverage of the PTV was satisfactory. Small bowel irradiated to a dose of 95 % was reduced by about 70% as compared to a 3D conformal 3-field treatment technique. However, incorporation of scatter contribution and a smoothing function in the iteration of optimisation searching greatly reduced the degree of modulation in the two-dimensional intensity profiles. Instead of 120–160 step-and-shoot MLC segments only 30–60 segments were necessary to deliver the five intensity profiles. The number of monitor units per fraction was reduced accordingly to about one half. Therefore, by controlling the smoothness of the intensity profiles during optimisation, the produced IMRT plans could be delivered more efficiently. Moreover, the possibility to account for overlap of organs was found to be very valuable to avoid hot spots in these regions and to get the full DVHs of all organs at the same time.


2010 ◽  
Vol 9 (2) ◽  
pp. 77-85 ◽  
Author(s):  
Courtney Buckey ◽  
Gregory Swanson ◽  
Sotirios Stathakis ◽  
Nikos Papanikolaou

AbstractBackground and Purpose: Intensity-modulated radiation therapy (IMRT) is considered by many to be the standard of care in the delivery of external-beam radiotherapy treatments to the prostate. The purpose of this study is to assess the validity of the purported benefits of IMRT.Materials and Methods: Treatment plans were produced for 10 patients using both 3D conformal radiation therapy (3D-CRT) and IMRT, utilising the dose constraints recommended by the Radiation Therapy Oncology Group (RTOG) 0415 protocol. Three IMRT modalities used in this study were linear accelerator based IMRT, helical tomotherapy, and serial tomotherapy. The prescription to the target, 76 Gy, was the same for all plans.Results: In general the 3D-CRT plans satisfied the RTOG criteria for planning target volume (PTV) coverage, and met or bettered the dose criteria for the organs at risk. PTV coverage was more homogeneous for the IMRT plans than the 3D-CRT plans but not significantly improved.Conclusions: Technically, because the IMRT plans required greater effort for the optimisation, longer treatment times and higher monitor units, the use of IMRT for the fulfilment of the protocol’s dosimetric goals was not justified using these constraints.


Sign in / Sign up

Export Citation Format

Share Document