Genomic alterations associated with the progression from castration-sensitive to castration-resistant metastatic prostate cancer based on machine learning analysis of cell-free DNA genomic profile.

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e17596-e17596
Author(s):  
Edwin Lin ◽  
Andrew W. Hahn ◽  
Roberto Nussenzveig ◽  
Sergiusz Wesolowski ◽  
Benjamin Louis Maughan ◽  
...  

e17596 Background: Metastatic castration-sensitive prostate cancer (mCSPC) eventually progresses to metastatic castration-resistant prostate cancer (mCRPC), which has few treatment options and carries a poor prognosis. We hypothesize that there are specific genomic alterations (GAs) associated with the progression from mCSPC to mCRPC. Methods: Patients (Pts) with mCSPC and mCRPC undergoing next-generation sequencing of cell-free DNA by a CLIA certified lab (G360, Guardant Health Inc., Redwood City, CA) as a part of routine care were retrospectively identified. Principal components analysis, an unsupervised ML algorithm, was used for data exploration and visualization. A combination of feature selection and supervised machine learning classification algorithms were used to identify genes associated with mCRPC. Gene Ontology enrichment analysis was used to identify pathways enriched for mCRPC-associated GAs. Patterns of mCRPC-associated GAs at a gene- and pathway-level were identified by Bayesian networks fitted using an exact structure learning algorithm. Results: 154 Pts with mCSPC and 187 Pts with mCRPC were included. A set of 16 GAs that robustly distinguished mCRPC from mCSPC (PPV = 94%, specificity = 91%) using supervised machine learning algorithms. These GAs, primarily amplifications, corresponded to AR, MAPK signaling, PI3K signaling, G1/S cell cycle, and receptor tyrosine kinases (RTKs). Positive statistical dependencies were observed between genes in these pathways. At a pathway-level, the presence of G1/S GAs in mCRPC samples increased the likelihood of harboring GAs in RTK, MAPK, and PI3K signaling. Limitations: The retrospective nature of our study means that unknown exposures could act as confounding variables, however this is representative of real-world clinical settings. Although the strength of this study is inclusion of clinically annotated patient samples, the limitation is that patients with mCSPC and mCRPC were unmatched. Conclusions: These results provide evidence that progression from mCSPC to mCRPC is associated with stereotyped concomitant gain-of-function in the RTK, PI3K, MAPK, and G1/S pathways in addition to AR. Upon external validation, these hypothesis generating data may warrant further investigation into combinatorial therapies that target these pathways.

JAMA Oncology ◽  
2016 ◽  
Vol 2 (12) ◽  
pp. 1598 ◽  
Author(s):  
Alexander W. Wyatt ◽  
Arun A. Azad ◽  
Stanislav V. Volik ◽  
Matti Annala ◽  
Kevin Beja ◽  
...  

2021 ◽  
pp. 710-725
Author(s):  
Emmalyn Chen ◽  
Clinton L. Cario ◽  
Lancelote Leong ◽  
Karen Lopez ◽  
César P. Márquez ◽  
...  

PURPOSE Cell-free DNA (cfDNA) may allow for minimally invasive identification of biologically relevant genomic alterations and genetically distinct tumor subclones. Although existing biomarkers may detect localized prostate cancer, additional strategies interrogating genomic heterogeneity are necessary for identifying and monitoring aggressive disease. In this study, we aimed to evaluate whether circulating tumor DNA can detect genomic alterations present in multiple regions of localized prostate tumor tissue. METHODS Low-pass whole-genome and targeted sequencing with a machine-learning guided 2.5-Mb targeted panel were used to identify single nucleotide variants, small insertions and deletions (indels), and copy-number alterations in cfDNA. The majority of this study focuses on the subset of 21 patients with localized disease, although 45 total individuals were evaluated, including 15 healthy controls and nine men with metastatic castration-resistant prostate cancer. Plasma cfDNA was barcoded with duplex unique molecular identifiers. For localized cases, matched tumor tissue was collected from multiple regions (one to nine samples per patient) for comparison. RESULTS Somatic tumor variants present in heterogeneous tumor foci from patients with localized disease were detected in cfDNA, and cfDNA mutational burden was found to track with disease severity. Somatic tissue alterations were identified in cfDNA, including nonsynonymous variants in FOXA1, PTEN, MED12, and ATM. Detection of these overlapping variants was associated with seminal vesicle invasion ( P = .019) and with the number of variants initially found in the matched tumor tissue samples ( P = .0005). CONCLUSION Our findings demonstrate the potential of targeted cfDNA sequencing to detect somatic tissue alterations in heterogeneous, localized prostate cancer, especially in a setting where matched tumor tissue may be unavailable (ie, active surveillance or treatment monitoring).


2021 ◽  
pp. clincanres.2328.2021
Author(s):  
Kei Mizuno ◽  
Takayuki Sumiyoshi ◽  
Takatsugu Okegawa ◽  
Naoki Terada ◽  
Satoshi Ishitoya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document