scholarly journals Phase III Precision Medicine Clinical Trial Designs That Integrate Treatment and Biomarker Evaluation

2019 ◽  
pp. 1-9 ◽  
Author(s):  
Mei-Yin C. Polley ◽  
Edward L. Korn ◽  
Boris Freidlin

Recent advances in biotechnology and cancer genomics have afforded enormous opportunities for development of more effective anticancer therapies. A key thrust of this modern drug development paradigm is successful identification of predictive biomarkers that can distinguish patients who might be sensitive to new targeted therapies. To respond to this challenge, a number of phase III cancer trial designs integrating biomarker-based objectives have been proposed and implemented in oncology drug development. In this article, we provide an updated review of commonly used biomarker-based randomized clinical trial designs, with a particular focus on design efficiency. When the efficacy of a new therapy may be limited to a biomarker-defined subgroup, the choice of an appropriate randomized clinical trial design should be guided by the strength of the biomarker’s credentials. If compelling evidence indicates that a targeted therapy is beneficial only in a particular biomarker-defined subgroup, an enrichment design should be used. If there is strong evidence that the treatment is likely to be more beneficial in the biomarker-positive patients but a meaningful benefit is also possible in the biomarker-negative patients, then a properly powered biomarker-stratified design (eg, a subgroup-specific or Marker Sequential Test strategy) would provide the most rigorous determination of the sensitive populations. If the evidence supporting the predictive value of the biomarker is weak and the treatment is expected to work in the overall population, then a fallback design could be used. Careful selection of an appropriate phase III design strategy that integrates evaluation of a new anticancer therapy and its companion diagnostic is critical to the success of precision medicine in oncology.

Author(s):  
Alexander Meisel

Until recently, the clinical management of cancer heavily relied on anatomical and histopathological criteria, with ad hoc guidelines directing the therapeutic choices in specific indications. In the last years, the development and therapeutic implementation of novel anticancer therapies significantly improved the clinical outcome of cancer patients. Nonetheless, such cutting-edge approaches revealed the limitation of the one-size-fits-all paradigm. The newly discovered molecular targets can be exploited either as bona fide targets for subsequent drug development, or as tools to precision medicine, in the form of prognostic and/or predictive biomarkers. This article provides an overview of some of the most recent advances in precision medicine in oncology, with a focus on novel tissue-agnostic anticancer therapies. The definition and implementation of biomarkers and companion diagnostics in clinical trials and clinical practice are also discussed, as well as the changing landscape in clinical trial design.


2020 ◽  
Vol 38 (6) ◽  
pp. 649-651 ◽  
Author(s):  
Francisco E. Vera-Badillo ◽  
Andrew J. Robinson ◽  
David M. Berman ◽  
Christopher M. Booth

Author(s):  
Fred Stephen Sarfo ◽  
Albert Akpalu ◽  
Ansumana Bockarie ◽  
Lambert Appiah ◽  
Samuel Blay Nguah ◽  
...  

2021 ◽  
Vol 16 ◽  
Author(s):  
Erica Winter ◽  
Scott Schliebner

: Characterized by small, highly heterogeneous patient populations, rare disease trials magnify the challenges often encountered in traditional clinical trials. In recent years, there have been increased efforts by stakeholders to improve drug development in rare diseases through novel approaches to clinical trial designs and statistical analyses. We highlight and discuss some of the current and emerging approaches aimed at overcoming challenges in rare disease clinical trials, with a focus on the ultimate stakeholder, the patient.


Sign in / Sign up

Export Citation Format

Share Document