Axial deformation of drilled shafts in rock

2004 ◽  
pp. 265-291
1987 ◽  
Vol 24 (1) ◽  
pp. 114-125 ◽  
Author(s):  
R. K. Rowe ◽  
H. H. Armitage

A theoretical examination of a number of factors affecting the behaviour of drilled piers in soft rock is presented. Firstly, the fundamental difference between tests commonly used for determining the peak average side shear resistance along a socketed pier is discussed. Secondly, the effect of interface strength parameters, dilatancy, and the relative Young's modulus of the pier and rock upon the average mobilized side shear resistance is examined. Thirdly, a series of theoretical solutions are presented in the form of design charts to provide a simple means of estimating the load—deflection response of piers both before and after full slip has developed along the pier shaft. Finally, the effect of weak horizontal seams adjacent to the pier is considered. Key words: drilled shafts, piers, piles, rock, theory, settlement, displacement, analysis.


2021 ◽  
Vol 6 (6) ◽  
pp. 83
Author(s):  
Angelo Aloisio

The estimate of internal prestressing in concrete beams is essential for the assessment of their structural reliability. Many scholars have tackled multiple and diverse methods to estimate the measurable effects of prestressing. Among them, many experimented with dynamics-based techniques; however, these clash with the theoretical independence of the natural frequencies of the forces of internally prestressed beams. This paper examines the feasibility of a hybrid approach based on dynamic identification and the knowledge of the elastic modulus. Specifically, the author considered the effect of the axial deformation on the beam length and the weight per unit of volume. It is questioned whether the uncertainties related to the estimate of the elastic modulus and the first natural frequency yield reasonable estimates of the internal prestressing. The experimental testing of a set of full-scale concrete girders with known design prestressing supports a discussion about its practicability. The author found that the uncertainty in estimating the natural frequencies and elastic modulus significantly undermines a reliable estimate of the prestressing state.


Author(s):  
Andrew Z. Boeckmann ◽  
Zakaria El-tayash ◽  
J. Erik Loehr

Some U.S. transportation agencies have recently applied mass concrete provisions to drilled shafts, imposing limits on maximum temperatures and maximum temperature differentials. On one hand, temperatures commonly observed in large-diameter drilled shafts have been observed to cause delayed ettringite formation (DEF) and thermal cracking in above-ground concrete elements. On the other, the reinforcement and confinement unique to drilled shafts should provide resistance to thermal cracking, and the provisions that have been applied are based on dated practices for above-ground concrete. This paper establishes a rational procedure for design of drilled shafts for durability requirements in response to hydration temperatures, which addresses both DEF and thermal cracking. DEF is addressed through maximum temperature differential limitations that are based on concrete mix design parameters. Thermal cracking is addressed through calculations that explicitly consider the thermo-mechanical response of concrete for predicted temperatures. Results from application of the procedure indicate consideration of DEF and thermal cracking potential for drilled shafts is prudent, but provisions that have been applied to date are overly restrictive in many circumstances, particularly the commonly adopted 35°F maximum temperature differential provision.


2021 ◽  
Vol 502 (2) ◽  
pp. 2266-2284
Author(s):  
Kazuo Makishima ◽  
Teruaki Enoto ◽  
Hiroki Yoneda ◽  
Hirokazu Odaka

ABSTRACT This paper describes an analysis of the NuSTAR data of the fastest-rotating magnetar 1E 1547 − 5408, acquired in 2016 April for a time lapse of 151 ks. The source was detected with a 1–60 keV flux of 1.7 × 10−11 erg s−1 cm−2, and its pulsation at a period of 2.086710(5) s. In 8–25 keV, the pulses were phase-modulated with a period of T = 36.0 ± 2.3 ks, and an amplitude of ∼0.2 s. This reconfirms the Suzaku discovery of the same effect at $T=36.0 ^{+4.5}_{-2.5}$ ks, made in the 2009 outburst. These results strengthen the view derived from the Suzaku data, that this magnetar performs free precession as a result of its axial deformation by ∼0.6 × 10−4, possibly caused by internal toroidal magneti fields (MFs) reaching ∼1016 G. Like in the Suzaku case, the modulation was not detected in energies below ∼8 keV. Above 10 keV, the pulse-phase behaviour, including the 36 ks modulation parameters, exhibited complex energy dependencies: at ∼22 keV, the modulation amplitude increased to ∼0.5 s, and the modulation phase changed by ∼65° over 10–27 keV, followed by a phase reversal. Although the pulse significance and pulsed fraction were originally very low in >10 keV, they both increased noticeably, when the arrival times of individual photons were corrected for these systematic pulse-phase variations. Possible origins of these complex phenomena are discussed, in terms of several physical processes that are specific to ultrastrong MFs.


1994 ◽  
Vol 120 (6) ◽  
pp. 1018-1033 ◽  
Author(s):  
J. Michael Duncan ◽  
Leonard T. Evans ◽  
Phillip S. K. Ooi

2010 ◽  
Vol 97-101 ◽  
pp. 3910-3915
Author(s):  
Kun Cai

The deformation of single-walled carbon nanotubes (SWCNTs) under large axial strain is studied by a geometrical mapping method. The interactions between atoms in carbon nanotubes (CNTs) are described by Tersoff-Brenner potential. Results show the strain energy depends on chirality but hardly on tubes’ radii. For graphitic sheet under large axial deformation, the elastic moduli decrease with the increase of engineering strain under tension. The modulus reaches the peak value as the axial engineering strain reaches -0.08 for armchair pattern and -0.15 for zigzag pattern under compression.


Sign in / Sign up

Export Citation Format

Share Document