Masomy infilled frames as an effective structural sub-assemblage

Author(s):  
Roko Žarnić ◽  
Samo Gostič
Keyword(s):  
Author(s):  
Seung-Jae Lee ◽  
Tae-Sung Eom ◽  
Eunjong Yu

AbstractThis study analytically investigated the behavior of reinforced concrete frames with masonry infills. For the analysis, VecTor2, a nonlinear finite element analysis program that implements the Modified Compression Field Theory and Disturbed Stress Field Model, was used. To account for the slip behavior at the mortar joints in the masonry element, the hyperbolic Mohr–Coulomb yield criterion, defined as a function of cohesion and friction angle, was used. The analysis results showed that the lateral resistance and failure mode of the infilled frames were significantly affected by the thickness of the masonry infill, cohesion on the mortar joint–brick interface, and poor mortar filling (or gap) on the masonry boundary under the beam. Diagonal strut actions developed along two or three load paths on the mortar infill, including the backstay actions near the tension column and push-down actions near the compression columns. Such backstay and push-down actions increased the axial and shear forces of columns, and ultimately affect the strength, ductility, and failure mode of the infilled frames.


1966 ◽  
Vol 92 (1) ◽  
pp. 381-404 ◽  
Author(s):  
Bryan Stafford Smith
Keyword(s):  

2018 ◽  
Vol 14 (2) ◽  
pp. 221-237 ◽  
Author(s):  
Farhad Akhoundi ◽  
Graça Vasconcelos ◽  
Paulo Lourenço

2015 ◽  
Vol 10 (Special-Issue1) ◽  
pp. 789-795
Author(s):  
Mehdi Shekarbeigi ◽  
Hooshang Shekarbeigi

This paper is to investigate the benefits of a new structural system (hereafter it is referred as “Ultra Hybrid System”) in high concrete buildings relying on the compound performance of the moment resistance frame, shear wall and infilled frame. In this case, the Ultra Hybrid System takes the advantage of the moment resistance frame and shear wall up to the height, where the wall performance reaches zero, while it is applied the infilled frame along with it. It is studied the system behavior based on using concrete-brick infilled frames in the upper floors to find out the interaction between the shear wall and infilled frame. Then, it is compared displacement, relative floor displacement, base shear, axial column loads in a hybrid system of the moment resistance frame and shear wall and the Ultra Hybrid System of the moment resistance frame, shear wall, and infilled frame. In this study, ETABS 2000 software package )Barkhordari et al., 2001) is used to model the system in compression diagonal mode. Finally, the results are presented in diagrams and tables.


1984 ◽  
Vol 18 (3) ◽  
pp. 551-560 ◽  
Author(s):  
Liauw Te-Chang ◽  
Kwan Kwok-Hung

Sign in / Sign up

Export Citation Format

Share Document