Climatic and Geodynamic Significance of Cenozoic Land Surfaces and Duricrusts of Inland Australia

2018 ◽  
pp. 201-213
Author(s):  
Helmut Wopfner
Keyword(s):  
2021 ◽  
Vol 13 (4) ◽  
pp. 654
Author(s):  
Erwin Wolters ◽  
Carolien Toté ◽  
Sindy Sterckx ◽  
Stefan Adriaensen ◽  
Claire Henocq ◽  
...  

To validate the iCOR atmospheric correction algorithm applied to the Sentinel-3 Ocean and Land Color Instrument (OLCI), Top-of-Atmosphere (TOA) observations over land, globally retrieved Aerosol Optical Thickness (AOT), Top-of-Canopy (TOC) reflectance, and Vegetation Indices (VIs) were intercompared with (i) AERONET AOT and AERONET-based TOC reflectance simulations, (ii) RadCalNet surface reflectance observations, and (iii) SYN Level 2 (L2) AOT, TOC reflectance, and VIs. The results reveal that, overall, iCOR’s statistical and temporal consistency is high. iCOR AOT retrievals overestimate relative to AERONET, but less than SYN L2. iCOR and SYN L2 TOC reflectances exhibit a negative bias of ~−0.01 and −0.02, respectively, in the Blue bands compared to the simulations. This diminishes for RED and NIR, except for a +0.02 bias for SYN L2 in the NIR. The intercomparison with RadCalNet shows relative differences < ±6%, except for bands Oa02 (Blue) and Oa21 (NIR), which is likely related to the reported OLCI “excess of brightness”. The intercomparison between iCOR and SYN L2 showed R2 = 0.80–0.93 and R2 = 0.92–0.96 for TOC reflectance and VIs, respectively. iCOR’s higher temporal smoothness compared to SYN L2 does not propagate into a significantly higher smoothness for TOC reflectance and VIs. Altogether, we conclude that iCOR is well suitable to retrieve statistically and temporally consistent AOT, TOC reflectance, and VIs over land surfaces from Sentinel-3/OLCI observations.


Author(s):  
Helmut Rott ◽  
Thomas Nagler ◽  
Alice Robert ◽  
Tony Sephton ◽  
Alex Wishart ◽  
...  

Author(s):  
J.-C. Calvet ◽  
T. Pellarin ◽  
J.-P. Wigneron ◽  
E. Lopez Baeza ◽  
K. Saleh ◽  
...  
Keyword(s):  

2017 ◽  
Vol 9 (7) ◽  
pp. 655 ◽  
Author(s):  
Yohei Sawada ◽  
Hiroyuki Tsutsui ◽  
Toshio Koike

Author(s):  
Marija Šperac ◽  
Dino Obradović

The urbanization process significantly reduced the permeability of land surfaces, which affected the changes of runoff characteristics and the relations in the hydrological cycle. In urban environments, the relationships within the hydrological cycle have changed in quantity, in particular: precipitation, air temperature, evaporation, and infiltration. By applying the green infrastructure (GI) to urban environments is beneficial for the water resources and the social community. GI has an effect on the improvement of ecological, economic, and social conditions. Using GI into urban areas increases the permeability of land surfaces, whereby decreasing surface runoff, and thus the frequency of urban floods. It also has a significant influence on the regulation of air quality, water purification, climate change impact, and the changes in the appearance of the urban environment. When planning and designing the GI, it is necessary to identify the type of GI and determine the size and location of the selected GI. Since each urban environment has its own characteristics, it is necessary to analyze them before deciding on the GI. The paper analyzed meteorological parameters (precipitation, air temperature, insolation, air humidity) affecting the selection of GI types, using the specific example of an urban environment – the City of Osijek, Croatia. Significant parameters when designing GI are operation and maintenance These parameters directly affect the efficiency of GI. The proper selection of GI and its location results in maximum gains: the reduction of land surface drainage - drainage of the sewage system, purification and retention of precipitation at the place of production, the improvement of air quality, and the improvement of living conditions in urban environments


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 138
Author(s):  
Yu Wang ◽  
Corene J. Matyas

This study examined whether varying moisture availability and roughness length for the land surface under a simulated Tropical Cyclone (TC) could affect its production of precipitation. The TC moved over the heterogeneous land surface of the southeastern U.S. in the control simulation, while the other simulations featured homogeneous land surfaces that were wet rough, wet smooth, dry rough, and dry smooth. Results suggest that the near-surface atmosphere was modified by the changes to the land surface, where the wet cases have higher latent and lower sensible heat flux values, and rough cases exhibit higher values of friction velocity. The analysis of areal-averaged rain rates and the area receiving low and high rain rates shows that simulations having a moist land surface produce higher rain rates and larger areas of low rain rates in the TC’s inner core. The dry and rough land surfaces produced a higher coverage of high rain rates in the outer regions. Key differences among the simulations happened as the TC core moved over land, while the outer rainbands produced more rain when moving over the coastline. These findings support the assertion that the modifications of the land surface can influence precipitation production within a landfalling TC.


Sign in / Sign up

Export Citation Format

Share Document