Vapor Flow in Porous Bodies

Author(s):  
N. V. Churaev ◽  
J. Lyklema ◽  
M.N. Churaeva
Keyword(s):  
1978 ◽  
Vol 17 (9) ◽  
pp. 668-671 ◽  
Author(s):  
V. V. Skorokhod ◽  
L. I. Tuchinskii

1952 ◽  
Vol 30 (4) ◽  
pp. 348-371 ◽  
Author(s):  
E. A. Flood ◽  
R. H. Tomlinson ◽  
A. E. Leger

The flow rates of the vapors of benzene, ethyl chloride, diethyl ether, methanol, and water through activated carbon rods have been found to exceed, considerably, flow rates calculated by classical equations. The excess flow rates show maxima in widely different relative pressure regions and are ascribed to flow of adsorbed material. An empirical equation is presented which correlates the observed flow rates with relevant adsorption isotherms. Classical equations of flow through elliptical and rectangular pipes are discussed with reference to flow through fine-grained porous materials. It is shown that equations of the Adzumi type are roughly valid as applied to fine-grained porous bodies, but that without a knowledge of the frequency distributions of pore sizes and shapes, flow data cannot be related to pore dimensions in any literal sense. End effects are discussed.


1965 ◽  
Vol 87 (1) ◽  
pp. 134-141 ◽  
Author(s):  
F. J. Moody

A theoretical model is developed for predicting the maximum flow rate of a single component, two-phase mixture. It is based upon annular flow, uniform linear velocities of each phase, and equilibrium between liquid and vapor. Flow rate is maximized with respect to local slip ratio and static pressure for known stagnation conditions. Graphs are presented giving maximum steam/water flow rates for: local static pressures between 25 and 3,000 psia, with local qualities from 0.01 to 1.00; local stagnation pressures and enthalpies which cover the range of saturation states.


2015 ◽  
Author(s):  
Silviu Sprinceana ◽  
Ioan Mihai ◽  
Marius Beniuga ◽  
Cornel Suciu

1970 ◽  
Vol 19 (3) ◽  
pp. 1123-1131 ◽  
Author(s):  
R. Toei ◽  
M. Okazaki
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document