Rock stress, pore pressure, borehole stability and sonic logging

2012 ◽  
Vol 577 ◽  
pp. 163-166
Author(s):  
Yu Wei Li ◽  
Jia Liu ◽  
Chao Yang Hu ◽  
Shuang Li ◽  
Yu Liu

Considering pore pressure variation of sidewall rock, which is caused by drilling fluid filtering, the porosity variation model of sidewall rock in sandstone reservoir and effective stress factor variation model are established, and according to relationship between pore pressure and total volume strain of sandstone, the calculation model of safe window of drilling fluid density on sandstone reservoir, with which considered variation of porosity and effective stress factor are finally established. Applying the calculation of this model shows that: with increased function of drilling fluid filtering, which is as increased as pore pressure of sidewall rock, caving pressure that ensures well hole stability is increased, fracturing pressure is decreased, safe window of drilling fluid is narrowing, and that is against of safety drilling.


2012 ◽  
Vol 594-597 ◽  
pp. 65-69
Author(s):  
Wei Li ◽  
Tie Yan ◽  
Si Qi Li ◽  
Ling Zhang ◽  
Xing Hua Xu

Underbalance drilling has been applied to each oil field at home and abroad, due to the advantage of increasing the penetration rate substantially, protecting the reservoir effectively and reducing the drilling costs. But in respect of rock stress state characteristics near the bottom, relatively speaking, the study was rarely.Take the borehole near the bottom in underbalance drilling as the research object, analyze the influence of terrestrial stress, pore pressure and fluid column pressure on mechanics characteristic of rock in the bottom, to study the rock crushing efficiency, well deviation and hole stability of non-permeable wellbore and permeable wellbore in underbalanced drilling. The result shows that the mechanical properties of rocks near the bottom are subject to terrestrial stress, pore pressure and fluid column pressure. In non-permeable rock, the rock crushing efficiency, the penetration rate and the concentrated force of well trend to increase, the well trends to inclination. In permeable wellbore, with the permeability increasing, the rock crushing efficiency, the penetration rate and the concentrated force of well trend to decrease, the tendency of inclination becomes lower.


2013 ◽  
Author(s):  
Uday Arun Tare ◽  
Manoj Dnyandeo Sarfare ◽  
Konstantin Azbel ◽  
Gary Wang ◽  
Brent Alan Couzens-Schultz ◽  
...  

2021 ◽  
Author(s):  
Takuma Kaneshima ◽  
Fuqiao Bai ◽  
Nobuo Morita

Abstract Borehole stability depends on various parameters such as rock strength, rock deformations, in-situ stress, borehole trajectory, shale swelling, pore pressure change due to osmosis, overbalance mud weight and temperature. The objective of this work is to construct analytical and numerical equations to predict borehole failure including all these parameters, and to comprehensively propose a methodology to improve the borehole stability. Analytical solutions are developed for inclined wells with respect to in-situ stress, shale swelling, pore pressure change due to osmosis, overbalance mud weight and temperature. A numerical model is developed for 3D inclined wells with orthotropic formation and layered formation. Using the analytical and the numerical models, stress state around inclined wells are evaluated. The breakout angle is predicted based on Mohr-Coulomb, Mogi, Lade and Drucker-Prager failure theories. Polar diagrams of mud weights are compared to judge the effect of each parameter and the magnitude predicted by the different failure theories. Shale swelling and pore pressure change due to osmosis are the most difficult to estimate among above-mentioned parameters. The laboratory measured swelling of cores obtained from various formations showed that the magnitude to induce breakouts caused by swelling was the largest comparing with other parameters. Therefore, when shale stability problems occur, we need to estimate the magnitude of shale swelling and osmosis due to water potential difference. Then, to overcome the shale stability problem, we evaluated the sensitivity of human controllable parameters on borehole stability. The parameters which can be controlled by drilling engineers are overbalance, type of mud, borehole temperature and borehole trajectory. If the shale swelling is small, the borehole stability is improved by the mud weight. However, from the swelling tests from the cores of Nankai-Trough, we estimated unless we used a swelling inhibitor to reduce the swelling less than 0.1%, the well was not possible to drill through. Actually, the well was abandoned due to instability after trying side track several times. Unlike previous works, this paper uses all important parameters (swelling, temperature, pore pressure, orthotropic formation, layered formation) to estimate the stresses around inclined wells with the same formation conditions for quantitative analysis. Failure analysis include Mohr, Mogi, Lade and Drucker-Prager. Finally, the polar diagrams of critical mud weight are used to judge whether we can choose well trajectory, orientation with respect to bedding planes, mud weight, shale inhibitor, and temperature to stabilize the borehole.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Yan Chuanliang ◽  
Deng Jingen ◽  
Lai Xiangdong ◽  
Li Xiaorong ◽  
Feng Yongcun

Deepwater shallow sediment is less-consolidated, with a rock mechanical behavior similar to saturated soil. It is prone to borehole shrinkage and downhole leakage. Assume the deepwater shallow sediments are homogeneous, isotropic, and ideally elastoplastic materials, and formation around the borehole is divided into elastic and plastic zone. The theories of small deformation and large deformation are, respectively, adopted in the elastic and plastic zone. In the plastic zone, Mohr–Coulomb strength criterion is selected. The stress and deformation distributions in these two zones, and the radius of plastic zone are derived. The collapse pressure calculation formula of deepwater shallow sediments under the control of different shrinkage rates is obtained. With the introduction of excess pore pressure theory in soil mechanics, the distribution rule of excess pore pressure in these two zones is obtained. Combined with hydraulic fracturing theory, the fracture mechanism of shallow sediments is analyzed and the theoretical formula of fracture pressure is given. The calculation results are quite close to the practically measured results. So the reliability of the theory is confirmed.


Author(s):  
Michinori Asaka ◽  
Rune Martin Holt

Abstract Shale formations are the main source of borehole stability problems during drilling operations. Suboptimal predictions of borehole failure may partly be caused by neglecting the anisotropic nature of shales: Conventional wellbore stability analysis is based on borehole stresses computed from isotropic linear elasticity (Kirsch solution) with the assumption of no induced pore pressure. This is very convenient for a practical implementation but does not always work for shales. Here, anisotropic wellbore stability analysis was performed targeting an offshore gas field to investigate in particular the impact of elastic anisotropy on borehole failure predictions. Stress concentration around a circular borehole in anisotropic shale was calculated by the Amadei solutions, and induced pore pressure was obtained from the Skempton parameters based on anisotropic poroelasticity. Borehole failure regions and modes were then predicted using the effective stresses and those are apparently consistent with observations. A comparison with the conventional approach suggests the importance of accounting for elastic anisotropy: Predicted failure regions, modes, and also the associated mud weight limits can be completely different. This observation may have significant implications for other fields since shale often show strong elastic anisotropy.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Junliang Yuan ◽  
Jingen Deng ◽  
Yong Luo ◽  
Shisheng Guo ◽  
Haishan Zhang ◽  
...  

Long-term oil and gas exploitation in reservoir will lead to pore pressure depletion. The pore pressure depletion will result in changes of horizontal in-situ stresses both in reservoirs and caprock formations. Using the geophysics logging data, the magnitude and orientation changes of horizontal stresses in caprock and reservoir are studied. Furthermore, the borehole stability can be affected by in-situ stresses changes. To address this issue, the dehydration from caprock to reservoir and roof effect of caprock are performed. Based on that, the influence scope and magnitude of horizontal stresses reduction in caprock above the depleted reservoirs are estimated. The effects of development on borehole stability in both reservoir and caprock are studied step by step with the above geomechanical model.


Sign in / Sign up

Export Citation Format

Share Document