Peptide-Based Drug Delivery Systems: Future Challenges, Perspectives, and Opportunities in Nanomedicine

Author(s):  
Diego Tesauro ◽  
Antonella Accardo ◽  
Carlo Diaferia ◽  
Vittoria Milano ◽  
Jean Guillon ◽  
...  
2013 ◽  
Vol 29 (2) ◽  
pp. 92-105 ◽  
Author(s):  
Sarah A. Molokhia ◽  
Samuel C. Thomas ◽  
Kevin J. Garff ◽  
Kenneth J. Mandell ◽  
Barbara M. Wirostko

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Fakhara Sabir ◽  
Muhammad Imran Asad ◽  
Maimoona Qindeel ◽  
Iqra Afzal ◽  
Muhammad Junaid Dar ◽  
...  

Nanomaterials have found extensive biomedical applications in the past few years because of their small size, low molecular weight, larger surface area, enhanced biological, and chemical reactivity. Among these nanomaterials, nanogels (NGs) are promising drug delivery systems and are composed of cross-linked polymeric nanoparticles ranging from 100 to 200 nm. NGs represent an innovative zone of research with speedy developments taking place on a daily basis. An incredible amount of focus is placed on the fabrication of NGs with novel polymers to achieve better control over the drug release. This review article covers a number of aspects of NGs including their types, associated pros and cons, and methods of preparation along with technical and economical superiority and therapeutic efficacy over each other. The last part of review summarizes the applications of NGs in the drug delivery and treatment of various diseases including brain disease, cardiovascular diseases, oxidative stress, diabetes, cancer therapy, tissue engineering, gene therapy, inflammatory disorders, pain management, ophthalmic and autoimmune diseases, and their future challenges. NGs appear to be an outstanding nominee for drug delivery systems, and further study is required to explore their interactions at the cellular and molecular levels.


Giant ◽  
2020 ◽  
Vol 3 ◽  
pp. 100022 ◽  
Author(s):  
Hui Wang ◽  
Changping Wang ◽  
Yuan Zou ◽  
Jingjing Hu ◽  
Yiwen Li ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Suvarna P. Phadatare ◽  
Munira Momin ◽  
Premanand Nighojkar ◽  
Sonali Askarkar ◽  
Kamalinder K. Singh

Dry eye syndrome (DES) or keratoconjunctivitis sicca (KCS) is a common disorder of the tear film caused by decreased tear production or increased evaporation and manifests with a wide variety of signs and symptoms. The present review from interpretation of the literature gives detailed information on the prevalence, definition, causes, diagnostic tests, and medical management of dry eye disease. A number of systems contribute to the physiological integrity of the ocular surface and disruption of system may or may not produce symptoms. Therefore accurate diagnosis of dry eyes with no or minimal disruption of physiological function is necessary. The paper also discusses different colloidal drug delivery systems and current challenges in the development of topical ophthalmic drug delivery systems for treatment of KCS. Due to the wide prevalence and number of factors involved, newer, more sensitive diagnostic techniques and novel therapeutic agents have been developed to provide ocular delivery systems with high therapeutic efficacy. The aim of this review is to provide awareness among the patients, health care professionals, and researchers about diagnosis and treatment of KCS and recent developments and future challenges in management of dry eye disease.


Author(s):  
Diego Tesauro ◽  
Antonella Accardo ◽  
Carlo Diaferia ◽  
Vittoria Milano ◽  
Jean Guillon ◽  
...  

2021 ◽  
Vol 12 (2) ◽  
pp. 1330-1337
Author(s):  
Durga Srinivasarao M ◽  
Saravanakumar K. ◽  
Chandra Sekhar Kothapalli Bannoth

Gastro-retentive drug delivery systems (GRDDS) attributes to gastric maintenance time combined with the medication discharge for expanded time has essentially improved patient consistency. Medications for which the chief fundamental site of ingestion is the stomach or the proximal piece of the small digestive tract or have the assimilation issue in the distal piece of the digestive system are reasonable for GRDDS. Orally sustaining or controlling the drug release combined with gastric retention property can avoid  recurrent dosing in the case of drugs with short half-lives. GRDDS is also effective in locally treating gastric and duodenal ulcers, including oesophagitis and Helicobacter pylori  infections. In this current survey, the physiology of the stomach alongside its motility design, typically called migrating motor complex (MMC), was discussed. Various approaches to GRDDS  with a focus on floating drug delivery systems (FDDS) were reviewed. The vacillations in plasma drug focus are limited and portion subordinate unfriendly impacts can be forestalled by FDDS, particularly for the medications with a restricted restorative list. Slow arrival of the medication into the body by means of FDDS limits the counter movement prompting higher medication proficiency. Further, the Advantages, limitations, suitable drug candidates, factors affecting and Future challenges of FDDS were discussed.


Author(s):  
G.E. Visscher ◽  
R. L. Robison ◽  
G. J. Argentieri

The use of various bioerodable polymers as drug delivery systems has gained considerable interest in recent years. Among some of the shapes used as delivery systems are films, rods and microcapsules. The work presented here will deal with the techniques we have utilized for the analysis of the tissue reaction to and actual biodegradation of injectable microcapsules. This work has utilized light microscopic (LM), transmission (TEM) and scanning (SEM) electron microscopic techniques. The design of our studies has utilized methodology that would; 1. best characterize the actual degradation process without artifacts introduced by fixation procedures and 2. allow for reproducible results.In our studies, the gastrocnemius muscle of the rat was chosen as the injection site. Prior to the injection of microcapsules the skin above the sites was shaved and tattooed for later recognition and recovery. 1.0 cc syringes were loaded with the desired quantity of microcapsules and the vehicle (0.5% hydroxypropylmethycellulose) drawn up. The syringes were agitated to suspend the microcapsules in the injection vehicle.


Sign in / Sign up

Export Citation Format

Share Document