Near-Field Subwavelength Focal Spot

2019 ◽  
pp. 61-99
Author(s):  
Victor V. Kotlyar ◽  
Sergey S. Stafeev ◽  
Anton G. Nalimov
Keyword(s):  
2002 ◽  
Vol 41 (Part 1, No. 11A) ◽  
pp. 6380-6385
Author(s):  
Hyeong Ryeol Oh ◽  
Dae-Gap Gweon ◽  
Jun-Hee Lee ◽  
Sang-Cheon Kim ◽  
See-Hyung Lee ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Victor V. Kotlyar ◽  
Sergey S. Stafeev ◽  
Roman V. Skidanov ◽  
Victor A. Soifer

We study binary axicons of period 4, 6, and 8 μm fabricated by photolithography with a 1 μm resolution, 500 nm depth, and 4 mm diameter. Near-field diffraction focal spots varying in diameter from 3.5λ to 4.5λ (for the axicon of period T=4 μm) and from 5λ to 8λ (for the axicon with T=8 μm) are experimentally found on the optical axis at a distance of up to 40 μm from the axicon for the wavelength λ=0.532 μm. The first focal spot is found at distance 2 μm (T=4 μm), with the period of the focal spots being 2 μm (T=4 μm) and 4 μm (T=8 μm). Diffraction of linearly polarized plane and diverging waves is simulated using FullWAVE (RSoft) and a proprietary program BOR-FDTD, which implement finite-difference schemes to solve three-dimensional Maxwell's equations in the Cartesian and cylindrical coordinates. The numerically simulated values for diameters of the near-field focal spots for the axicon of period T=4 μm are in good agreement with the experimental values.


2011 ◽  
Vol 23 (6) ◽  
pp. 1449-1453 ◽  
Author(s):  
高学燕 Gao Xueyan ◽  
苏毅 Su Yi ◽  
叶一东 Ye Yidong ◽  
关有光 Guan Youguang

2017 ◽  
Vol 391 ◽  
pp. 24-29 ◽  
Author(s):  
Svetlana Nikolaevna Khonina ◽  
Andrey Vladimirovich Ustinov
Keyword(s):  

2021 ◽  
Vol 45 (2) ◽  
pp. 214-221
Author(s):  
D.A. Savelyev

Spatial intensity distributions of the Laguerre-superGauss modes (1,0) as well as a super-Gaussian beam with radial and circular polarization were investigated versus changes in the height of a diffractive axicon. The height of the relief of the optical element varied from 0.25λ to 3λ. The modeling by a finite-difference time-domain method showed that variations in the height of the diffractive axicon significantly affect the diffraction pattern in the near field of the axicon. The smallest focal spot size for a super-Gaussian beam was obtained for radial polarization at a height equal to two wavelengths. The minimum size of the focal spot for the Laguerre-superGauss mode (1,0) was obtained for circular "–" polarization with an element height equal to a quarter of the wavelength.


2021 ◽  
Vol 45 (4) ◽  
pp. 512-519
Author(s):  
Y.E. Geints ◽  
O.V. Minin ◽  
E.K. Panina ◽  
I.V. Minin

Binary Fresnel zone plates (ZP) are one of the most frequently used focusing elements of inplane optical schemes in micro- and nanophotonics. With a decrease in the diameter and focal distance of the ZP to meso-wavelength sizes, the parameters of the focusing region begin to be significantly influenced by features of the ZP design (material, thickness, relief depth). The spatial structure of the focal spot formed in the near-field is investigated by the numerical finite elements (FEM) simulations of the transmission of a plane optical wave through a mesoscale binary phase ZP. We show that there is a range of optimal etching depths of the ZP ridges and optimal thicknesses of the plate substrate, at which the best focusing of the incident optical wave is realized in terms of the maximum field intensity and the minimum size of the focal spot. In addition, a concept of a super-focusing binary phase ZP with an immersion layer in the form of a truncated cone fabricated of ZP material is proposed, which makes it possible to focus the circularly polarized light wave into a subdiffraction region with a half-width of about "lambda"/2n (n is the ZP refractive index).


Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


Author(s):  
D. A. Carpenter ◽  
Ning Gao ◽  
G. J. Havrilla

A monolithic, polycapillary, x-ray optic was adapted to a laboratory-based x-ray microprobe to evaluate the potential of the optic for x-ray micro fluorescence analysis. The polycapillary was capable of collecting x-rays over a 6 degree angle from a point source and focusing them to a spot approximately 40 µm diameter. The high intensities expected from this capillary should be useful for determining and mapping minor to trace elements in materials. Fig. 1 shows a sketch of the capillary with important dimensions.The microprobe had previously been used with straight and with tapered monocapillaries. Alignment of the monocapillaries with the focal spot was accomplished by electromagnetically scanning the focal spot over the beveled anode. With the polycapillary it was also necessary to manually adjust the distance between the focal spot and the polycapillary.The focal distance and focal spot diameter of the polycapillary were determined from a series of edge scans.


2007 ◽  
Author(s):  
Stuart Gregson ◽  
John McCormick ◽  
Clive Parini

Sign in / Sign up

Export Citation Format

Share Document