Switched Flux–Permanent Magnet Synchronous Motor Analysis, Design, and Control

2018 ◽  
pp. 257-299
Author(s):  
Ion Boldea ◽  
Lucian Tutelea
2019 ◽  
Vol 140 ◽  
pp. 10006
Author(s):  
Aleksandr Lutonin ◽  
Andrey Shklyarskiy ◽  
Yaroslav Shklyarskiy

This paper represents control strategy of anisotropic permanent magnet synchronous motor (IPMSM) in the field-weakening region. Field weakening controller allows to increase maximum achievable speed with output torque reduction. Proposed control system consists of four general modes: MTPA (maximum torque per ampere), MC (maximum current), FW (field weakening), and MTPV (maximum torque per voltage) which must be chosen accordingly to motor speed, current and torque references. Operation point is found as an intersection of torque hyperbola and voltage ellipse curves in d-q motor’s current reference frame involving motor parameters’ limits. However, due to nonlinear dependence between torque and voltage equations, it is quite complicated to obtain both right control mode selection and reference output calculation. In order to solve this problem, a unified control algorithm adopted for wide speed and torque reference with online constraints calculation is proposed. Matlab/Simulink control model of PMSM motor and control system were designed in order to show developed strategy performance. Simulation results shows increasing of speed limit by more than 2.5 times related to nominal speed with high controller’s response. However, speed limit increasing leads to a decrease in motor’s output torque. Due to this fact, presented control strategy is not suitable for applications where nominal torque level is essential for all speed operation points.


2011 ◽  
Vol 48-49 ◽  
pp. 292-299 ◽  
Author(s):  
Wei Xue ◽  
Yan Ling Guo ◽  
Yong Li Li

The permanent magnet synchronous motor (PMSM), a nonlinear dynamic system, can exhibit prominent chaotic characteristics under some choices of system parameters and external inputs. Based on a mathematical model of the permanent magnet synchronous motor, the existence of chaotic attractor is verified by the phase trajectory, Lyapunov exponent map and the bifurcation diagram. Chaotic phenomenon, such as a strong oscillation of speed and torque, unstable operating performance, affects the normal operation of motor. It makes the PMSM in a stable state to control chaos of the PMSM with a control strategy of infinitesimal geometry, which can eliminate chaos well.


Author(s):  
Libiao Wang ◽  
Jian Fan ◽  
Zhengchu Wang ◽  
Baishao Zhan ◽  
Jun Li

Chaotic motion and chaos control of a permanent magnet synchronous motor (PMSM) are studied in this paper. The dynamics of chaotic PMSM with load vibration perturbation is presented and its complex dynamic characteristics are analyzed by using bifurcation diagrams, Lyapunov exponents, and phase portraits. Furthermore, an adaptive neural sliding mode control is addressed to suppress chaos oscillations for the PMSM. The neural network approximation is applied in the controller to emulate of the load perturbation. Simulation results show that the proposed control scheme can eliminate the chaos and make the system achieve stable states even with the existence of unknown load vibration disturbance.


Sign in / Sign up

Export Citation Format

Share Document