The Charge Density Wave Transition and Ground State: Mean Field Theory and Some Basic Observations

2018 ◽  
pp. 31-70
Author(s):  
George Grüner
1998 ◽  
Vol 12 (20) ◽  
pp. 2031-2044 ◽  
Author(s):  
Shi-Dong Liang ◽  
Qianghua Wang ◽  
Z. D. Wang ◽  
Shun-Qing Shen

We address the low temperature properties of quasi-one-dimensional organic polymers, which may be described by a modified Anderson lattice-Su–Schrieffer–Heeger Hamiltonian. The condition and nature of various orders, such as, the ferromagnetic order, the dimerization order, the charge density wave order and the spin density wave order, are analyzed by a self-consistent mean field theory. Analytical results are obtained for a specific case. The topological structure of the chain leads to a flatband structure of the energy band, which gives rise to a ferromagnetic order in the case of half filling at low temperatures. The on-site Coulomb repulsion enhances the ferromagnetic order, while the nearest-neighbor interaction (V) suppresses both the ferromagnetic order and the dimerization, and leads to the charge density wave. The π–d hybridization (td) suppresses the dimerization, and does not affect the magnetization. The ferromagnetic order and dimerization order coexist for weak td.


1997 ◽  
Vol 14 (4) ◽  
pp. 259-262 ◽  
Author(s):  
Ren Zhong-zhou ◽  
Zhu Zhi-yuan ◽  
Cai Yan-huang ◽  
Shen Yao-song ◽  
Zhan Wen-long ◽  
...  

1993 ◽  
Vol 07 (23n24) ◽  
pp. 3973-4003 ◽  
Author(s):  
P. FOURY ◽  
J.P. POUGET

The structural instabilities towards the formation of a charge density wave (CDW) ground state exhibited by several layered Mo and W bronzes and oxides are reviewed. It is shown that in these two-dimensional (2D) metals, including the purple bronzes A x Mo 6 O 17 (A=K, Na, Tl; x≈1), the γ and η phases of MO 4 O 11 and the monophosphate tungsten bronzes with pentagonal tunnels ( PO 2)4 ( WO 3)2m(m=4, 6, 7), the CDW instability can be associated with particular chains of MoO 6 or WO 6 octahedra of the ReO 3 type slabs along which there is a strong overlap of the t 2g orbitals. The CDW critical wave vectors of the purple bronzes, Mo 4 O 11 and the tungsten bronzes with m=4 and 6 lead to a common nesting between differently oriented 1D Fermi surfaces. It is suggested that the anharmonic CDW modulation, which occurs in the tungsten bronzes with m≥7, could be the structural fingerprint of electron localization effects.


2004 ◽  
Vol 69 (12) ◽  
Author(s):  
D. Graf ◽  
J. S. Brooks ◽  
E. S. Choi ◽  
S. Uji ◽  
J. C. Dias ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document