Preclinical Assessment of Oral Mucosal Drug Delivery Systems

Author(s):  
Joseph Robinson ◽  
Bing Li
2018 ◽  
Vol 147 ◽  
pp. 350-366 ◽  
Author(s):  
Mario Jug ◽  
Anita Hafner ◽  
Jasmina Lovrić ◽  
Maja Lusina Kregar ◽  
Ivan Pepić ◽  
...  

Author(s):  
A. Deevan Paul ◽  
P. Samatha ◽  
S. Manasa ◽  
R. Munemma ◽  
D. Supriya

Oral mucosal drug delivery system is widely applicable as novel site for administration of drug and controlled release action by preventing first pass metabolism and enzymatic degradation due to GI microbial flora. The oral cavity represents a challenging area to develop an effective drug delivery modelling. This arises due to the various inherent functions of the oral cavity (eating, swallowing, speaking, chewing), as well as the presence of the fluid that is involved in all these activities, saliva. This fluid is continually secreted into and then removed from the mouth. Oral Mucosa drug delivery system provides local and systemic action. The delivery of drugs through the buccal mucosa has attracted much research interest over the past two decades and numerous approaches, both conventional and complex, have been developed in an attempt to deliver a variety of pharmaceutical compounds via the buccal route. To outline the progress in the in vitro and in vivo modeling of Mucosal drug delivery and provide a critical review of currently used methods. The purpose of this review is to represent the modeling of oral cavity with Mucoadhesive drug delivery systems and clarify the potential alternative to conventional therapy.


Author(s):  
G.E. Visscher ◽  
R. L. Robison ◽  
G. J. Argentieri

The use of various bioerodable polymers as drug delivery systems has gained considerable interest in recent years. Among some of the shapes used as delivery systems are films, rods and microcapsules. The work presented here will deal with the techniques we have utilized for the analysis of the tissue reaction to and actual biodegradation of injectable microcapsules. This work has utilized light microscopic (LM), transmission (TEM) and scanning (SEM) electron microscopic techniques. The design of our studies has utilized methodology that would; 1. best characterize the actual degradation process without artifacts introduced by fixation procedures and 2. allow for reproducible results.In our studies, the gastrocnemius muscle of the rat was chosen as the injection site. Prior to the injection of microcapsules the skin above the sites was shaved and tattooed for later recognition and recovery. 1.0 cc syringes were loaded with the desired quantity of microcapsules and the vehicle (0.5% hydroxypropylmethycellulose) drawn up. The syringes were agitated to suspend the microcapsules in the injection vehicle.


Sign in / Sign up

Export Citation Format

Share Document