Fundamental Length Metrology

Author(s):  
Jens Flügge ◽  
Stefanie Kroker ◽  
Harald Schnatz
Keyword(s):  
1980 ◽  
Vol 170 (2) ◽  
pp. 228-264 ◽  
Author(s):  
R. Brout ◽  
F. Englert ◽  
J.-M. Frère ◽  
E. Gunzig ◽  
P. Nardone ◽  
...  

2008 ◽  
Vol 45 ◽  
pp. 41-56 ◽  
Author(s):  
Ramon Grima ◽  
Santiago Schnell

In the past decade, advances in molecular biology such as the development of non-invasive single molecule imaging techniques have given us a window into the intricate biochemical activities that occur inside cells. In this chapter we review four distinct theoretical and simulation frameworks: (i) non-spatial and deterministic, (ii) spatial and deterministic, (iii) non-spatial and stochastic and (iv) spatial and stochastic. Each framework can be suited to modelling and interpreting intracellular reaction kinetics. By estimating the fundamental length scales, one can roughly determine which models are best suited for the particular reaction pathway under study. We discuss differences in prediction between the four modelling methodologies. In particular we show that taking into account noise and space does not simply add quantitative predictive accuracy but may also lead to qualitatively different physiological predictions, unaccounted for by classical deterministic models.


Author(s):  
J Fl�gge ◽  
F Riehle ◽  
H Kunzmann
Keyword(s):  

2005 ◽  
Vol 870 ◽  
Author(s):  
V. G. Karpov ◽  
Diana Shvydka ◽  
Yann Roussillon

AbstractThe recently developed physics of thin-film photovoltaics is suggested to be representative of other giant area electronics. We show that (i) giant-area devices are intrinsically nonuniform in the lateral directions, (ii) the nonuniformity spans length scales from millimeters to meters depending on external drivers such as light intensity and bias, and (iii) it significantly impacts the device performance. We derive a fundamental length scale that discriminates between the cases of small and large-area devices, and beyond which a new physics emerges. In addition, we present a practical method of mitigating the nonuniformity effects.


Universe ◽  
2019 ◽  
Vol 5 (12) ◽  
pp. 225 ◽  
Author(s):  
Sergey I. Kruglov

A new modified Hayward metric of magnetically charged non-singular black hole spacetime in the framework of nonlinear electrodynamics is constructed. When the fundamental length introduced, characterising quantum gravity effects, vanishes, one comes to the general relativity coupled with the Bronnikov model of nonlinear electrodynamics. The metric can have one (an extreme) horizon, two horizons of black holes, or no horizons corresponding to the particle-like solution. Corrections to the Reissner–Nordström solution are found as the radius approaches infinity. As r → 0 the metric has a de Sitter core showing the absence of singularities, the asymptotic of the Ricci and Kretschmann scalars are obtained and they are finite everywhere. The thermodynamics of black holes, by calculating the Hawking temperature and the heat capacity, is studied. It is demonstrated that phase transitions take place when the Hawking temperature possesses the maximum. Black holes are thermodynamically stable at some range of parameters.


2008 ◽  
Vol 372 (19) ◽  
pp. 3356-3359 ◽  
Author(s):  
N. Khosravi ◽  
H.R. Sepangi

1969 ◽  
Vol 23 (21) ◽  
pp. 1267-1270 ◽  
Author(s):  
Arthur J. Greenberg ◽  
David S. Ayres ◽  
Allan M. Cormack ◽  
Robert W. Kenney ◽  
David O. Caldwell ◽  
...  

1986 ◽  
Vol 01 (03) ◽  
pp. 183-189 ◽  
Author(s):  
M. DINEYKHAN ◽  
Kh. NAMSRAI

Generalizing the idea of quantum space-time to the quantum mechanical case we re-analyze low energy processes and consider the nuclear radii, the Lamb shift and hyperfine structure of the hydrogen atom. Calculations of the contributions to these measurements due to quantum space-time structure allow us to obtain estimates on the value of the fundamental length L. Among them, hyperfine structure gives the most stringent bound, L≤10−19 cm.


Sign in / Sign up

Export Citation Format

Share Document