Evaluation and optimization on the reflection and durability of reflective coatings for cool pavement

2020 ◽  
pp. 396-402
Author(s):  
N. Xie ◽  
H. Li*
Keyword(s):  
1993 ◽  
Vol 32 (28) ◽  
pp. 5666 ◽  
Author(s):  
C. J. Stolz ◽  
J. R. Taylor ◽  
W. K. Eickelberg ◽  
J. D. Lindh

Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 93
Author(s):  
V. R. Sankar Cheela ◽  
Michele John ◽  
Wahidul Biswas ◽  
Prabir Sarker

Pavements occupy about 40% of urban land cover, with 75–80% black top roads, playing a critical role in urban connectivity and mobility. Solar energy is absorbed and stored in pavements leading to an increase in surface temperatures. Decreasing green cover is further contributing to rise in regional temperatures. Due to this activity, the city experiences urban heat island (UHI). This study presents a critical review of the literature on mitigation measures to combat UHI using reflective pavements with an emphasis on durability properties and impacts of tree canopy. The strategies with a focus on application of chip seals, white toppings, and coatings were discussed. Role of surface reflectance, including those from asphalt and concrete pavements, albedo improvements, and technological trends, application of waste materials, and industrial by‐products are presented. Also, urban tree shading systems’ contribution to pavement temperature and microclimate systems is presented. The review shows that the development of mitigation measures using tree shading systems can reduce the pavement temperature during daytime and increase human thermal comfort. The outcomes of this review provide a scope for future studies to develop sustainable and state‐of‐the-art engineering solutions in the field of reflective coatings and urban forest systems.


2011 ◽  
Vol 250-253 ◽  
pp. 536-539
Author(s):  
Pei Wang ◽  
Wen Yan Lv ◽  
Zhi Yong Wei ◽  
Xia Zhen Zhang ◽  
Lian Liu ◽  
...  

This paper presented the results of a comparative study aiming to investigate the effect of reflective coatings on lowering surface temperatures of matrix. Moreover, the important factors of the amount and the color of colored hollow-ceramic micro sphere were discussed. It was demonstrated that the use of reflective coatings could reduce a white surface temperature by 6.5 °C compared to a sample. The temperature difference became to reduce while the color of coatings turned to dark from the white to the yellow.


Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 829
Author(s):  
Xian Rong ◽  
Lichao Jiao ◽  
Xiangfei Kong ◽  
Guangpu Yuan

In this article, we mixed hollow glass beads with nano-TiO2 and iron oxide red in a certain proportion to prepare a low-brightness, high-reflective, safe, and durable cooling coating throughout the experiments. The coating is suitable for energy-saving in tropical areas. To discuss the energy saving effects of the coating on an exterior envelope in tropical areas, a comparative analysis for two scenario models of a two-story residential building in Kuala Lumpur, Malaysia was conducted. The results indicated that the heat reflective insulation coating could reduce the exterior envelope surface temperature effectively, and the maximum temperature change was about 6–8 °C. Through calculations, it was found that the annual energy saving rate was 12.9%, which showed that the energy saving effect of the heat insulation coating was obvious in Kuala Lumpur. The brightness of the coating was less than 50%, and its comfort and safety met the requirements.


2011 ◽  
Vol 51 (4) ◽  
pp. 303-308 ◽  
Author(s):  
G. Abromavičius ◽  
R. Buzelis ◽  
R. Drazdys ◽  
K. Juškevičius ◽  
S. Kičas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document