Optimal Selection and Expected Time of Unsatisfied Demand by Meaningful Interpretation of Algebraic Inequalities

2021 ◽  
pp. 85-96
Author(s):  
Michael Todinov
Author(s):  
M. T. Todinov

The paper treats the important problem related to risk controlled by the simultaneous presence of critical events, randomly appearing on a time interval and shows that the expected time fraction of simultaneously present events does not depend on the distribution of events durations. In addition, the paper shows that the probability of simultaneous presence of critical events is practically insensitive to the distribution of the events durations. These counter-intuitive results provide the powerful opportunity to evaluate the risk of overlapping of random events through the mean duration times of the events only, without requiring the distributions of the events durations or their variance. A closed-form expression for the expected fraction of unsatisfied demand for random demands following a homogeneous Poisson process in a time interval is introduced for the first time. In addition, a closed-form expression related to the expected time fraction of unsatisfied demand, for a fixed number of consumers initiating random demands with a specified probability, is also introduced for the first time. The concepts stochastic separation of random events based on the probability of overlapping and the average overlapped fraction are also introduced. Methods for providing stochastic separation and optimal stochastic separation achieving balance between risk and cost of risk reduction are presented.


2012 ◽  
Vol 45 (4) ◽  
pp. 41 ◽  
Author(s):  
M. K. Saha ◽  
Santanu Das ◽  
A. Bandyopadhyay ◽  
S. Bandyopadhyay

2012 ◽  
Vol 45 (4) ◽  
pp. 41
Author(s):  
M. K. Saha ◽  
Santanu Das ◽  
A. Bandyopadhyay ◽  
S. Bandyopadhyay

2021 ◽  
Vol 13 (6) ◽  
pp. 3571
Author(s):  
Bogusz Wiśnicki ◽  
Dorota Dybkowska-Stefek ◽  
Justyna Relisko-Rybak ◽  
Łukasz Kolanda

The paper responds to research problems related to the implementation of large-scale investment projects in waterways in Europe. As part of design and construction works, it is necessary to indicate river ports that play a major role within the European transport network as intermodal nodes. This entails a number of challenges, the cardinal one being the optimal selection of port locations, taking into account the new transport, economic, and geopolitical situation that will be brought about by modernized waterways. The aim of the paper was to present an original methodology for determining port locations for modernized waterways based on non-cost criteria, as an extended multicriteria decision-making method (MCDM) and employing GIS (Geographic Information System)-based tools for spatial analysis. The methodology was designed to be applicable to the varying conditions of a river’s hydroengineering structures (free-flowing river, canalized river, and canals) and adjustable to the requirements posed by intermodal supply chains. The method was applied to study the Odra River Waterway, which allowed the formulation of recommendations regarding the application of the method in the case of different river sections at every stage of the research process.


2021 ◽  
Vol 174 (1) ◽  
Author(s):  
Amirlan Seksenbayev

AbstractWe study two closely related problems in the online selection of increasing subsequence. In the first problem, introduced by Samuels and Steele (Ann. Probab. 9(6):937–947, 1981), the objective is to maximise the length of a subsequence selected by a nonanticipating strategy from a random sample of given size $n$ n . In the dual problem, recently studied by Arlotto et al. (Random Struct. Algorithms 49:235–252, 2016), the objective is to minimise the expected time needed to choose an increasing subsequence of given length $k$ k from a sequence of infinite length. Developing a method based on the monotonicity of the dynamic programming equation, we derive the two-term asymptotic expansions for the optimal values, with $O(1)$ O ( 1 ) remainder in the first problem and $O(k)$ O ( k ) in the second. Settling a conjecture in Arlotto et al. (Random Struct. Algorithms 52:41–53, 2018), we also design selection strategies to achieve optimality within these bounds, that are, in a sense, best possible.


Sign in / Sign up

Export Citation Format

Share Document