Survey of Deep Learning Methods in Image Recognition and Analysis of Intrauterine Residues

Author(s):  
Bhawna Swarnkar ◽  
Nilay Khare ◽  
Manasi Gyanchandani
Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 81
Author(s):  
Jianbin Xiong ◽  
Dezheng Yu ◽  
Shuangyin Liu ◽  
Lei Shu ◽  
Xiaochan Wang ◽  
...  

Plant phenotypic image recognition (PPIR) is an important branch of smart agriculture. In recent years, deep learning has achieved significant breakthroughs in image recognition. Consequently, PPIR technology that is based on deep learning is becoming increasingly popular. First, this paper introduces the development and application of PPIR technology, followed by its classification and analysis. Second, it presents the theory of four types of deep learning methods and their applications in PPIR. These methods include the convolutional neural network, deep belief network, recurrent neural network, and stacked autoencoder, and they are applied to identify plant species, diagnose plant diseases, etc. Finally, the difficulties and challenges of deep learning in PPIR are discussed.


2021 ◽  
Vol 4 (1) ◽  
pp. 78-85
Author(s):  
V.V. GNATUSHENKО ◽  
N.L. DOROSH ◽  
T.M. FENENKO

Author(s):  
Marco Star ◽  
Kristoffer McKee

Data-driven machinery prognostics has seen increasing popularity recently, especially with the effectiveness of deep learning methods growing. However, deep learning methods lack useful properties such as the lack of uncertainty quantification of their outputs and have a black-box nature. Neural ordinary differential equations (NODEs) use neural networks to define differential equations that propagate data from the inputs to the outputs. They can be seen as a continuous generalization of a popular network architecture used for image recognition known as the Residual Network (ResNet). This paper compares the performance of each network for machinery prognostics tasks to show the validity of Neural ODEs in machinery prognostics. The comparison is done using NASA’s Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset, which simulates the sensor information of degrading turbofan engines. To compare both architectures, they are set up as convolutional neural networks and the sensors are transformed to the time-frequency domain through the short-time Fourier transform (STFT). The spectrograms from the STFT are the input images to the networks and the output is the estimated RUL; hence, the task is turned into an image recognition task. The results found NODEs can compete with state-of-the-art machinery prognostics methods. While it does not beat the state-of-the-art method, it is close enough that it could warrant further research into using NODEs. The potential benefits of using NODEs instead of other network architectures are also discussed in this work.


2020 ◽  
Vol 65 (2) ◽  
pp. 50
Author(s):  
H.B. Mureșan ◽  
A.D. Călin ◽  
A.M. Coroiu

This paper is an overview of the latest advancements of image recognition for fruit counting and yield estimation. Considering this domain is developing rapidly, we have considered the cutting-edge literature in the field, for the last 5 years, focused on the task of yield estimation by detecting and counting fruit in the tree canopy. This is a much more complex task than the classification of fruit post-harvesting, which has been more widely reviewed. Moreover, we identify the major challenges and propose the next steps for advancing this research field.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
...  

2020 ◽  
Vol 26 ◽  
Author(s):  
Xiaoping Min ◽  
Fengqing Lu ◽  
Chunyan Li

: Enhancer-promoter interactions (EPIs) in the human genome are of great significance to transcriptional regulation which tightly controls gene expression. Identification of EPIs can help us better deciphering gene regulation and understanding disease mechanisms. However, experimental methods to identify EPIs are constrained by the fund, time and manpower while computational methods using DNA sequences and genomic features are viable alternatives. Deep learning methods have shown promising prospects in classification and efforts that have been utilized to identify EPIs. In this survey, we specifically focus on sequence-based deep learning methods and conduct a comprehensive review of the literatures of them. We first briefly introduce existing sequence-based frameworks on EPIs prediction and their technique details. After that, we elaborate on the dataset, pre-processing means and evaluation strategies. Finally, we discuss the challenges these methods are confronted with and suggest several future opportunities.


Sign in / Sign up

Export Citation Format

Share Document