Exploring the Potential of 3D Printing of the Spare Parts Supply Chain in the Maritime Industry

2017 ◽  
pp. 171-178
Author(s):  
E. Kostidi ◽  
N. Nikitakos
2020 ◽  
Vol 10 (11) ◽  
pp. 4004 ◽  
Author(s):  
Mika Salmi ◽  
Jan Sher Akmal ◽  
Eujin Pei ◽  
Jan Wolff ◽  
Alireza Jaribion ◽  
...  

The COVID-19 pandemic has caused a surge of demand for medical supplies and spare parts, which has put pressure on the manufacturing sector. As a result, 3D printing communities and companies are currently operating to ease the breakdown in the medical supply chain. If no parts are available, 3D printing can potentially be used to produce time-critical parts on demand such as nasal swabs, face shields, respirators, and spares for ventilators. A structured search using online sources and feedback from key experts in the 3D printing area was applied to highlight critical issues and to suggest potential solutions. The prescribed outcomes were estimated in terms of cost and productivity at a small and large scale. This study analyzes the number and costs of parts that can be manufactured with a single machine within 24 h. It extrapolates this potential with the number of identical 3D printers in the world to estimate the global potential that can help practitioners, frontline workers, and those most vulnerable during the pandemic. It also proposes alternative 3D printing processes and materials that can be applicable. This new unregulated supply chain has also opened new questions concerning medical certification and Intellectual property rights (IPR). There is also a pressing need to develop new standards for 3D printing of medical parts for the current pandemic, and to ensure better national resilience.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 365
Author(s):  
Igor Vujović ◽  
Joško Šoda ◽  
Ivica Kuzmanić ◽  
Miro Petković

Future trends in maritime technology include the application of additive technology in spare parts management. Nowadays, 3D printing has become an integral technology in many fields. Maritime industry is one of the fields where 3D printing has become a focus of research. To prepare Electro-technical Officers (ETOs) for the future, it is necessary to investigate parameters which help with deciding whether to use additive technology or to order a spare part. This paper aims to research parameters influencing spare parts printing as a job carried out by ETOs aboard ships. Conclusions about the filament density and quality of the printed parts are derived and presented. Suggestions for future work and possible applications are given.


2020 ◽  
Author(s):  
Yue Zhang ◽  
Bram Westerweel ◽  
Rob J.I. Basten ◽  
Jing-Sheng Jeannette Song
Keyword(s):  

2020 ◽  
Vol 21 ◽  
pp. 958-963 ◽  
Author(s):  
M. Varsha Shree ◽  
V. Dhinakaran ◽  
V. Rajkumar ◽  
P.M. Bupathi Ram ◽  
M.D. Vijayakumar ◽  
...  

2010 ◽  
Vol 21 (2) ◽  
pp. 226-245 ◽  
Author(s):  
Harry Martin ◽  
Aris A. Syntetos ◽  
Alejandro Parodi ◽  
Yiannis E. Polychronakis ◽  
Liliane Pintelon
Keyword(s):  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sapam Ningthemba Singh ◽  
Vavilada Satya Swamy Venkatesh ◽  
Ashish Bhalchandra Deoghare

Purpose During the COVID-19 pandemic, the three-dimensional (3D) printing community is actively participating to address the supply chain gap of essential medical supplies such as face masks, face shields, door adapters, test swabs and ventilator valves. This paper aims to present a comprehensive study on the role of 3D printing during the coronavirus (COVID-19) pandemic, its safety and its challenges. Design/methodology/approach This review paper focuses on the applications of 3D printing in the fight against COVID-19 along with the safety and challenges associated with 3D printing to fight COVID-19. The literature presented in this paper is collected from the journal indexing engines including Scopus, Google Scholar, ResearchGate, PubMed, Web of Science, etc. The main keywords used for searches were 3D printing COVID-19, Safety of 3D printed parts, Sustainability of 3D printing, etc. Further possible iterations of the keywords were used to collect the literature. Findings The applications of 3D printing in the fight against COVID-19 are 3D printed face masks, shields, ventilator valves, test swabs, drug deliveries and hands-free door adapters. As most of these measures are implemented hastily, the safety and reliability of these parts often lacked approval. The safety concerns include the safety of the printed parts, operators and secondary personnel such as the workers in material preparation and transportation. The future challenges include sustainability of the process, long term supply chain, intellectual property and royalty-free models, etc. Originality/value This paper presents a comprehensive study on the applications of 3D printing in the fight against COVID-19 with emphasis on the safety and challenges in it.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yugowati Praharsi ◽  
Mohammad Abu Jami’in ◽  
Gaguk Suhardjito ◽  
Hui Ming Wee

Purpose This study aims to apply a Lean Six Sigma framework to support continuous improvement in the maritime industry (shipbuilding, logistics services and shipping companies) during COVID-19 pandemics. By applying the concepts of Lean Six Sigma and supply chain resilience, the most suitable continuous improvement method for the maritime industry is developed to maintain a resilient supply chain during COVID-19. Design/methodology/approach A specific shipbuilding, logistics services and shipping company in Indonesia is chosen as the research object. The Lean Six Sigma framework reveals the wastes through the supply chain resilience concept, and implements internal business processes to maintain optimal system performance. Findings The paper identifies important implementation aspects in applying Lean Six Sigma to shipbuilding, logistics services and shipping. The DMAIC (define, measure, analyze, improve and control) approach is applied to achieve supply chain resilience. Resilient measures are generated for the case companies to maximize performance during the pandemics. Practical implications This paper provides a new insight for integrating Lean Six Sigma and resilience strategies in the maritime industry during COVID-19 disruptions. The authors provide some insights to sustain the performance of the maritime industries under study. Originality/value This study is part of the first research in the maritime industry that focuses on continuous improvement during COVID-19 using Lean Six Sigma and supply chain resilience.


2019 ◽  
Vol 25 (3) ◽  
pp. 473-487 ◽  
Author(s):  
Yuan Zhang ◽  
Stefan Jedeck ◽  
Li Yang ◽  
Lihui Bai

PurposeDespite the widespread expectation that additive manufacturing (AM) will become a disruptive technology to transform the spare parts supply chain, very limited research has been devoted to the quantitative modeling and analysis on how AM could fulfill the on-demand spare parts supply. On the other hand, the choice of using AM as a spare parts supply strategy over traditional inventory is a rising decision faced by manufacturers and requires quantitative analysis for their AM-or-stock decisions. The purpose of this paper is to develop a quantitative performance model for a generic powder bed fusion AM system in a spare parts supply chain, thus providing insights into this less-explored area in the literature.Design/methodology/approachIn this study, analysis based on a discrete event simulation was carried out for the use of AM in replacement of traditional warehouse inventory for an on-demand spare parts supply system. Generic powder bed fusion AM system was used in the model, and the same modeling approach could be applied to other types of AM processes. Using this model, the impact of both spare parts demand characteristics (e.g. part size attributes, demand rates) and the AM operations characteristics (e.g. machine size and postpone strategy) on the performance of using AM to supply spare parts was studied.FindingsThe simulation results show that in many cases the AM operation is not as cost competitive compared to the traditional warehouse-based spare parts supply operation, and that the spare parts size characteristics could significantly affect the overall performance of the AM operations. For some scenarios of the arrival process of spare parts demand, the use of the batched AM production could potentially result in significant delay in parts delivery, which necessitates further investigations of production optimization strategies.Originality/valueThe findings demonstrate that the proposed simulation tool can not only provide insights on the performance characteristics of using AM in the spare parts supply chain, especially in comparison to the traditional warehousing system, but also can be used toward decision making for both the AM manufacturers and the spare parts service providers.


2018 ◽  
Vol 24 (7) ◽  
pp. 1178-1192 ◽  
Author(s):  
Siavash H. Khajavi ◽  
Jan Holmström ◽  
Jouni Partanen

PurposeInnovative startups have begun a trend using laser sintering (LS) technology patents expiration, namely, by introducing LS additive manufacturing (AM) machines that can overcome utilization barriers, such as the costliness of machines and productivity limitation. The recent rise of this trend has led the authors to investigate this new class of machines in novel settings, including hub configuration. There are various supply chain configurations to supply spare parts in industrial operations. This paper aims to explore the promise of a production configuration that combines the benefits of centralized production with the flexibility of local manufacturing without the huge costs related to it.Design/methodology/approachThis study quantitatively examines the feasibility of different AM-enabled spare parts supply chain configurations. Using cost data extracted from a case study, three scenarios per AM machine technology are modeled and compared.FindingsResults suggest that hub production configuration depending on the utilized AM machines can provide economic efficiency and effectiveness to reduce equipment downtime. While previous studies have suggested the need for AM machines with efficiency for single part production for a distributed supply chain, the findings in this research illustrate the positive relationship between multi-part production capability and the feasibility of a hub manufacturing configuration establishment.Originality/valueThis study explores the promise of a production configuration that combines the benefits of centralized production with the flexibility of local manufacturing without the huge costs related to it. Although the existing body of knowledge contains research on production decentralization, research on various levels of decentralization is lacking. Using a real-world case study, this study aims to compare the feasibility of different levels of decentralization for AM-enabled spare parts supply chains.


Sign in / Sign up

Export Citation Format

Share Document