The Evolving Role of the Caco-2 Cell Model to Estimate Intestinal Absorption Potential and Elucidate Transport Mechanisms

2019 ◽  
pp. 333-357
Author(s):  
Jibin Li ◽  
Ismael J. Hidalgo
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yorick Janssens ◽  
Nathan Debunne ◽  
Anton De Spiegeleer ◽  
Evelien Wynendaele ◽  
Marta Planas ◽  
...  

AbstractQuorum sensing peptides (QSPs) are bacterial peptides produced by Gram-positive bacteria to communicate with their peers in a cell-density dependent manner. These peptides do not only act as interbacterial communication signals, but can also have effects on the host. Compelling evidence demonstrates the presence of a gut-brain axis and more specifically, the role of the gut microbiota in microglial functioning. The aim of this study is to investigate microglial activating properties of a selected QSP (PapRIV) which is produced by Bacillus cereus species. PapRIV showed in vitro activating properties of BV-2 microglia cells and was able to cross the in vitro Caco-2 cell model and reach the brain. In vivo peptide presence was also demonstrated in mouse plasma. The peptide caused induction of IL-6, TNFα and ROS expression and increased the fraction of ameboid BV-2 microglia cells in an NF-κB dependent manner. Different metabolites were identified in serum, of which the main metabolite still remained active. PapRIV is thus able to cross the gastro-intestinal tract and the blood–brain barrier and shows in vitro activating properties in BV-2 microglia cells, hereby indicating a potential role of this quorum sensing peptide in gut-brain interaction.


2021 ◽  
Vol 351 ◽  
pp. 89-98
Author(s):  
Océane Reale ◽  
Dorina Bodi ◽  
Antoine Huguet ◽  
Valérie Fessard

1981 ◽  
Vol 241 (1) ◽  
pp. G49-G53
Author(s):  
N. Brautbar ◽  
B. S. Levine ◽  
M. W. Walling ◽  
J. W. Coburn

The intestinal absorption of calcium (Ca) has been shown to depend on vitamin D3, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], and dietary phosphorus (P) concentration. This study was designed to evaluate the role of dietary P independent of vitamin D3 or 1,25(OH)2D3. Vitamin D-deficient rats were studied during dietary P restriction and were compared with control groups raised on a normal-phosphorus diet (NP). Balance studies were sued. Net intestinal Ca absorption was significantly lower with dietary P restriction compared with the NP group. This malabsorption of Ca was corrected by the administration of either D3 for 1,25(OH)2D3, despite hypophosphatemia. Everted gut sacs showed a marked reduction in the uptake of 45Ca in the duodenum, jejunum, and ileum during dietary P restriction. We concluded that dietary P concentration plays a major role in intestinal Ca absorption in the vitamin D-deficient rats. These findings suggest an effect of the low-phosphate diet on the vitamin D-dependent, Ca-transport mechanism.


Sign in / Sign up

Export Citation Format

Share Document