2 Introduction to different electrochemical corrosion monitoring techniques

Author(s):  
Bosch ◽  
Walter Bogaerts
2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Vinod P. Raphael ◽  
Joby Thomas Kakkassery ◽  
Shaju K. Shanmughan ◽  
Sini Varghese

Two novel heterocyclic compounds (E)-2-(1-(pyridin-3-yl)ethylidene)hydrazinecarbothioamide (3APTSC) and (E)-3-(1-(2-phenylhydrazono)ethyl)pyridine (3APPH) derived from 1-(pyridin-3-yl)ethanone were synthesized and characterized by various spectroscopic techniques. The corrosion inhibition efficacies of these compounds on copper in 0.1 M HNO3 were screened by electrochemical corrosion monitoring techniques such as potentiodynamic polarization studies and impedance spectroscopy. Investigations clearly established that 3APPH displayed higher corrosion inhibition efficiency on Cu than 3APTSC at all concentrations. The mechanism of inhibition was verified with the help of adsorption isotherms. 3APTSC and 3APPH obeyed Langmuir adsorption isotherm on Cu surface. Thermodynamic parameters such as adsorption equilibrium constant (Kads) and free energy of adsorption (ΔGads) were also evaluated. Potentiodynamic polarization investigations confirmed that the 3APTSC and 3APPH act as mixed type inhibitors. Surface analysis of the metal specimens was performed by scanning electron microscopy. Energy of HOMO and LUMO, their difference, number of electrons transferred, electronegativity, chemical hardness, and so forth were evaluated by quantum chemical studies. Agreeable correlation was observed between the results of quantum chemical calculations and other corrosion monitoring techniques.


CORROSION ◽  
1989 ◽  
Vol 45 (10) ◽  
pp. 847-852 ◽  
Author(s):  
C. K. Walker ◽  
G. C. Maddux

2019 ◽  
Vol 9 (21) ◽  
pp. 4700 ◽  
Author(s):  
Seunguk Na ◽  
Inkwan Paik

Rebar corrosion monitoring techniques have been used in studies involving embedded sensors that can detect changes in the corrosion currents and the polarization resistance of rebars in large structures. Defect detection methods that employ infrared cameras are useful non-destructive testing methods to detect defects in concrete structures. However, the measurement results from these methods would vary depending upon several factors that affect thermography. Because of these reasons, they have not been able to provide sufficient reliability. The goal of this study is to develop a technique that uses infrared cameras to quantitatively measure rebar corrosion rates. To examine the impact of the cover thickness, the experiment variables were set at cover thicknesses of 10, 20, and 30 mm and rebar corrosion ratios of 0%, 1%, 3%, 5%, 7%, and 10%. Each variable was tested and a total of 60 specimens were created (i.e., 54 specimens and 6 preliminary specimens). In this study, corrosion was applied using an electrochemical corrosion method that employs Faraday’s law, i.e., the law of conservation of electric charge. The test results of height, width, and area of temperature distribution curve were analyzed, the height of temperature distribution curve was increased as the heating time was grown. In addition, the area of temperature distribution was varied dependent upon the corrosion rate and cover thickness.


Author(s):  
Sandeep Vyas

Reliance Gas Pipelines Limited (RGPL) is currently implementing a gas pipeline project from Shahdol, Madhya Pradesh to Phulpur, Uttar Pradesh for evacuation of gas produced from Coal Bed Methane (CBM) blocks owned by Reliance Industries Ltd. This pipeline will be hooked up with GAIL’s HVJ Pipeline at Phulpur. Over all Pipeline system includes 312 km (approx.) long trunk line, and associated facilities such as Compressor Station at Shahdol, Intermediate Pigging facilities, Metering & Regulating facilities at Phulpur and 12 No. Mainline valve stations. Gas produced from CBM blocks will be dehydrated within Gas Gathering Station facilities of CBM Project located upstream of pipeline Compressor station at Shahdol. Gas received at pipeline battery limit is dry and non-corrosive gas in nature, Internal corrosion is not expected in normal course of operation, however internal corrosion of the natural gas pipeline can occur when the pipe wall is exposed to moisture and other contaminants either under process upset conditions or under particular operating conditions. Even though internal corrosion is not expected during normal course of operations, to take care of any eventuality, it is proposed to implement Internal Corrosion Monitoring (ICMS) system in this project. ICMS will provide an efficient and reliable means of continuous monitoring internal corrosion. Internal Corrosion Monitoring (ICMS) system is used as a part of overall integrity management framework; to achieve two objectives viz., verify the corrosive behaviour of gas and to verify the efficacy of applied preventive actions. Philosophy involved in evaluating a suitable CM technique would include : • Applicable corrosion damage mechanisms, anticipated corrosion rates and probable locations. • Suitable CM technique and location based on process condition, system corrosivity, water content, pigging facilities, available corrosion allowance, design life, maintenance etc., • Measurement frequency. Some of the Corrosion Monitoring techniques used for pipeline and of relevance are: • Weight-loss Corrosion Coupons (CC), • Electrical Resistance probes (ER), • Linear Polarization Resistance Probe (LPR) • Ultrasonic Thickness Measurement (UT) • Sampling Points (SP) This paper discusses the merits / demerits of these corrosion monitoring techniques, considerations for selecting a specific technique for the Shahdol – Phulpur Gas Pipeline Project and highlights the implementation of the internal corrosion monitoring system.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Ying Lei ◽  
Zhu-Peng Zheng

Monitoring the condition of steel corrosion in reinforced concrete (RC) is imperative for structural durability. In the past decades, many electrochemistry based techniques have been developed for monitoring steel corrosion. However, these electrochemistry techniques can only assess steel corrosion through monitoring the surrounding concrete medium. As alternative tools, some physical based techniques have been proposed for accurate condition assessment of steel corrosion through direct measurements on embedded steels. In this paper, some physical based monitoring techniques developed in the last decade for condition assessment of steel corrosion in RC are reviewed. In particular, techniques based on ultrasonic guided wave (UGW) and Fiber Bragg grating (FBG) are emphasized. UGW based technique is first reviewed, including important characters of UGW, corrosion monitoring mechanism and feature extraction, monitoring corrosion induced deboning, pitting, interface roughness, and influence factors. Subsequently, FBG for monitoring corrosion in RC is reviewed. The studies and application of the FBG based corrosion sensor developed by the authors are presented. Other physical techniques for monitoring corrosion in RC are also introduced. Finally, the challenges and future trends in the development of physical based monitoring techniques for condition assessment of steel corrosion in RC are put forward.


Author(s):  
E. Thomas Cook ◽  
Holger Lukas ◽  
Donald Elmore ◽  
Wai Yeung Mok ◽  
Bhupen Mehta

Cold-end sulfuric-acid corrosion is a phenomenon common in boilers and heat recovery steam generators. Usually, operating conditions can be changed to reduce or eliminate corrosion. The operation of an on-line continuous corrosion probe in a test-rig and correlation with physical corrosion measurements is reported. Description of the development of a full-scale recuperator corrosion probe is presented as well as preliminary results.


Sign in / Sign up

Export Citation Format

Share Document