Sustainable Weed Control in Oilseed Rape

Weed Control ◽  
2018 ◽  
pp. 325-344
Author(s):  
Peter J.W. Lutman
Keyword(s):  
2015 ◽  
Vol 71 ◽  
pp. 96-105 ◽  
Author(s):  
M. Lorin ◽  
M.-H. Jeuffroy ◽  
A. Butier ◽  
M. Valantin-Morison

2017 ◽  
Vol 104 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Rimantas Velička ◽  
Rita Mockevičienė ◽  
Aušra Marcinkevičienė ◽  
Rita Pupalienė ◽  
Zita Kriaučiūnienė ◽  
...  

Crops ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 1-13
Author(s):  
Sebastian Schwabe ◽  
Sabine Gruber ◽  
Wilhelm Claupein

The framework conditions for chemical weed control in oilseed rape (OSR) are becoming increasingly unfavorable in Central Europe. On the one hand, weed resistance is spreading and, on the other, there is a growing social desire to reduce or eliminate the use of chemical crop protection products. In a field experiment, hoeing, as a weed control measure performed two times per growing season (one time in autumn and one time in spring) in oilseed rape (Brassica napus; two varieties), was compared to chemical control by herbicides and a combination of hoeing and herbicide application (five treatments altogether). The chemical control by herbicides consisted of a broad-spectrum pre-emergence treatment and a post-emergence graminicide application. The trial was set up in each of three periods (years 2014/2015, 2015/2016, and 2016/2017) at the experimental station Ihinger Hof, University of Hohenheim, Stuttgart, Germany. The effect of the treatments on weed plant density, weed biomass at the time of harvesting, and on OSR grain yield was investigated. Weed plant density was measured four times per trial year, each time before and after hoeing. In 2015/2016 after spring hoeing, and in 2016/2017 at all data collection times, weed plant density was significantly higher in hoeing without herbicide application than in the other variants. No significant differences occurred at the other data collection times. The weed plant density ranged from 0.5 to 57.8 plants m−2. Regardless of the trial year, pure hoeing always resulted in a significantly higher weed biomass at the time of harvesting than the herbicide applications or the combinations. The weed biomass at the time of harvesting ranged between 0.1 and 54.7 g m−2. No significant differences in grain yield between hoeing and herbicide application occurred in all three trial years. According to the results, hoeing is a suitable extension of existing integrated weed control strategies in OSR.


2015 ◽  
Vol 18 (Special Issue) ◽  
pp. 34-36
Author(s):  
Aušra Marcinkevičiene ◽  
Rimantas Velička ◽  
Rita Mockevičiene ◽  
Rita Pupaliene ◽  
Zita Kriaučiuniene ◽  
...  

2016 ◽  
Vol 103 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Rimantas Velička ◽  
Aušra Marcinkevičienė ◽  
Rita Pupalienė ◽  
Lina Marija Butkevičienė ◽  
Robertas Kosteckas ◽  
...  

2020 ◽  
Author(s):  
Aušra Marcinkevičienė ◽  
Marina Keidan ◽  
Rita Pupalienė ◽  
Rimantas Velička ◽  
Zita Kriaučiūnienė ◽  
...  

A field experiment was conducted during the 2014–2017 period at Aleksandras Stulginskis University (now—Vytautas Magnus University Agriculture Academy) on a Endocalcaric Endogleyic Luvisol (LV-can.gln) according to the WRB 2014. The three nonchemical weed control methods were explored: (1) thermal (using wet water steam), (2) mechanical (interrow loosening), and (3) self-regulation (smothering). In the thermal and mechanical weed control treatments, winter oilseed rape was grown with an interrow spacing of 48.0 cm and in weed smothering (self-regulation) treatment with an interrow spacing of 12.0 cm. Winter oilseed rape was grown in the soil with a regular humus layer (23–25 cm) and with a thickened humus layer (45–50 cm). Annual weeds predominated in the winter oilseed rape crop. In the soil with both humus layers, regular and thickened, the most efficient weed control method was mechanical weed management both during the autumn (efficacy 26.7–75.1%) and spring (efficacy 37.1–76.7%) growing seasons. Thermal and mechanical weed control in combination with the bio-preparations in droughty years significantly reduced the number of weed seedlings. Dry matter mass of weeds most markedly decreased through the application of the mechanical weed management method.


2018 ◽  
Vol 24 (4) ◽  
Author(s):  
Aušra Marcinkevičienė ◽  
Rimantas Velička ◽  
Marina Keidan ◽  
Lina Marija Butkevičienė ◽  
Zita Kriaučiūnienė ◽  
...  

The current study was aimed to establish the impact of non-chemical weed control methods (thermal, mechanical andsmothering) and biopreparations on winter oilseed rape (Brassica napus L.) preparation for over-wintering and productivity under the conditions of the organic farming system. During the 2014–2016 period, a field experiment was conducted at the Experimental Station of Aleksandras Stulginskis University on Calc(ar)i-Endohypogleyic Luvisol (LVg-n-w-cc). The field experiment treatments were the following: Factor A – non-chemical weed control methods: 1) thermal (water steam), 2) mechanical (inter-row loosening), 3) smothering (self-regulation, sowing with narrow inter-rows); Factor B – application of biopreparations: 1) without application, 2) with application. During the period of autumn vegetation, in the smothering method plots, where the winter oilseed rape crop density was 1.5–2.4 times lower than that in the plots of thermal and mechanical weed control methods, the significantly highest aboveground mass of plant, number of leaves per plant, diameter of root collar, root area, total root length, root biomass of plant and leaf area of plant were determined, and in 2015 the highest chlorophyll index was measured in the leaves. In 2014 the application of biopreprations in the smothering method plots significantly increased the aboveground mass of plant (41.3%), the total root length (33.2%) and the root biomass of plant (28.0%). In 2004 the diameter of winter oilseed rape root collar depended on the leaf area of plant (r = 0.83, P < 0.05) and the root area of plant (r = 0.86, P < 0.05), and in 2015 it depended on the leaf area of plant (r = 0.89, P < 0.05), the root area (r = 0.99, P < 0.01), the total root length (r = 0.98, P < 0.01) and the root biomass of plant (r = 0.99, P < 0.01). Positive, strong and very strong, and statistically significant relationships were established between the leaf area of oilseed rape and the root area, the total root length and the root biomass of plant. In the spring of 2015, during the renewed oilseed rape vegetation stage, the highest crop density (98.0 units m–2) and over-wintering (96.0%) were obtained in the plots of the mechanical weed control method in combination with biopreparations. In the spring of 2016, different nonchemical weed control methods and biopreparations did not have any significant effect on the oilseed rape over-wintering and the crop density. In 2015, different non-chemical weed control methods did not have any significant influence on oilseed rape biometric parameters before harvesting. In 2016, in the smothering method plots a significantly lower mass of oilseed rape and the number of branches per plant were formed compared to those of other used treatments. The highest number of pods per plant was determined in the smothering method plots in combination with biopreparations. In 2015 biopreprations in the smothering method plots significantly increased the 1 000 seed mass, and in 2016 they increased the number of pods per plant, respectively 7.2 and 35.6%. In the droughty year of 2015, the significantly highest winter oilseed rape seed yield was recorded in the plots of the mechanical weed control method, and in the moist year of 2016, the highest yield was in the smothering method plots with biopreparations. In 2015 biopreprations significantly increased the oilseed rape seed yield in the plots of thermal and mechanical weed control methods, and in 2016 they increased the yield in the smothering method plots, respectively 43.4, 25.1 and 51.5%. In 2015 the winter oilseed rape seed yield depended on the crop density (r = 0.86, P < 0.05) and the plant height (r = 0.94, P < 0.01), and in 2016 it depended on the number of pods per plant (r = 0.98, P < 0.01) and the plant height (r = 0.85, P < 0.05).


Sign in / Sign up

Export Citation Format

Share Document