Organic Agriculture
Latest Publications


TOTAL DOCUMENTS

8
(FIVE YEARS 8)

H-INDEX

1
(FIVE YEARS 1)

Published By Intechopen

9781789846683, 9781789846690

2020 ◽  
Author(s):  
Francisco Daniel Hernández-Castillo ◽  
Francisco Castillo-Reyes ◽  
Marco Antonio Tucuch-Pérez ◽  
Roberto Arredondo-Valdes

This chapter will cover topics about the microbial antagonists Trichoderma spp. and Bacillus spp. from the perspective of use as potential biological control agents on plant diseases. Results obtained in the laboratory about from their isolation, microbial strain collections for both genera, taxonomic identification, antifungal activity in in vitro tests, obtained evaluation of the antifungal effect of secondary metabolites from microbial antagonists will be shown. Besides, results obtained from bioassays in the greenhouse and field are used as biopesticides in the control of diseases in fruit trees and vegetables and their effects on the promotion of plant growth and increased crop yield.


2020 ◽  
Author(s):  
Nisa Sansel Tandogan ◽  
Haluk Gedikoglu

Promoting sustainable agricultural production requires farmers to adopt new technologies such as organic farming to increase the agricultural productivity, while conserving the environment. Adoption and diffusion of new technologies need a long process, as experienced in the past. There are social and economic factors, identified in the literature, and those could cause delays in farmers’ use of new technologies. Hence, technology adoption and diffusion are important policy issues in agriculture. For that reason, this paper provides a literature review including factors influencing the adoption and diffusion of technology in agriculture and aims to contribute to the future studies and policies, especially focusing on the social capital or the social aspects, which are proven not to be analyzed by the previous studies comprehensively. The results show that interaction with neighbors and relatives, and membership in a group or organization, which represent the social aspects, has a positive influence on adoption and diffusion of new technologies. Hence, policy-makers should incorporate the social aspects when designing the policies, such as cost sharing programmes, to promote adoption and diffusion of new technologies.


Author(s):  
Shaon Kumar Das ◽  
Ravikant Avasthe

The indigenous farming systems are, by and large, organically practiced. Organic farming systems facilitate the buildup of soil organic matter, reducing risk of erosion and runoff and enhancing nutrient storehouse in soils for plants. Rapid developments in organic farming promotion necessitated continuous flow of technology to meet day-to-day challenges. Farmyard manure (FYM), compost, and green manure are the most important and widely used bulky organic manures. Manuring with different short-duration legumes is suitable for maintenance of soil quality in terms of adding nitrogen to soil. Sustainable quantity of potassium can be maintained by vegetative mulching with crop residues. The use of balanced dosages of mixed compost at 5–10 t/ha along with 2 t/ha dolomite increases yield of maize, rice, mustard, and soybean. This article briefly describes about the integrated organic nutrient management as soil policy for upgrading cropping system to restore soil productivity.


2020 ◽  
Author(s):  
Tamanreet Kaur

Urbanization and industrialization resulted in rapid increase in volume of solid waste; its management has become one of the biggest problems today. Solid wastes can be disposed off by methods like land filling, incineration, conversion into biogas, recycling, and composting, but its overproduction has led to inappropriate disposal practices such as their indiscriminate and inappropriately timed application to agricultural fields that ultimately leads to water and soil pollution. However, if handled properly, these organic wastes can be used for vermicomposting; it is an effective recycling technology that improves the quality of the products which is disinfected, detoxified, and highly nutritive. It is a low cost, eco-biotechnological process of waste management in which earthworms are used to cooperate with microorganisms in order to convert biodegradable wastes into organic fertilizer. Earthworms excreta (vermicast) is a nutritive organic fertilizer rich in humus, NPK, micronutrients, beneficial soil microbes; nitrogen-fixing, phosphate solubilizing bacteria, actinomycets, and growth hormones auxins, gibberlins and cytokinins, is a suitable alternative to chemical fertilizers, being an excellent growth promoter and protector for crop plants. Thus, vermiculture not only results in management of soild waste but also produces excellent nutrient enriched vermicompost. Vermicompost is beneficial for sustainable organic agriculture and maintaining balanced ecosystem.


2020 ◽  
Author(s):  
Siddhartha Das ◽  
Sudeepta Pattanayak

Every year approximately 30–50% of crops suffer with different kinds of biotic stresses. Rapidly growing agrochemical industries and their diverse products make the environment more toxic and simultaneously hazardous for plant heath and soil health. Such types of agrochemicals are toxic, hazardous, carcinogenic, non-eco-friendly. Therefore, this is the ideal time to think about some more effective alternatives against those problems. Nanotechnological approaches bring the alternatives in the form of decreasing toxicity, improving shelf-life, increasing solubility for poorly water-soluble agrochemicals, minimum use with maximum effect, slow leaching efficiency with long-term effect with coupling of eco-friendly naturalistic way. The way of nanoparticle application in agriculture, specifically disease management, is unique, where it can be used singly or by coupling with fungicidal, herbicidal, insecticidal, RNA-interference molecules. Though it has such a positive impact, very few products will be commercially available in our market due to high price of particular products and well-established long field trial efficacy detection among insect, pest-pathogen, and environment. Application of nanomolecules in other progressive fields has been emerging, whereas advancement in agricultural applications needs to be boosted up through skilled knowledge transfer and basic understanding of its fundamental aspect.


Author(s):  
Md. Motaher Hossain ◽  
Farjana Sultana

Plant growth-promoting fungi (PGPF) constitute diverse genera of nonpathogenic fungi that provide a variety of benefits to their host plants. PGPF show an effective role in sustainable agriculture. Meeting increasing demand for crop production without damage to the environment is the biggest challenge nowadays. The use of PGPF has been recognized as an environmentally friendly way of increasing crop production. These fungi have proven to increase crop yields by improving germination, seedling vigor, plant growth, root morphogenesis, photosynthesis, and flowering through either a direct or indirect mechanism. The mechanisms of PGPF involve solubilizing and mineralizing nutrients for easy uptake by plants, regulating hormonal balance, producing volatile organic compounds and microbial enzyme, suppressing plant pathogens and ameliorating abiotic stresses. Successful colonization is an intrinsic factor for most PGPF to exert their beneficial effects on plants. A certain level of specificity exists in the interactions between plant species and PGPF for root colonization and growth promoting effects. There is a gap between the number of reported efficacious PGPF and the number of PGPF as biofertilizer. Efforts should be strengthened to improve the efficacy and commercialization of PGPF. Hence, this chapter summarizes valuable information regarding the application and mechanisms of PGPF in sustainable agriculture.


2020 ◽  
Author(s):  
Muthuraman Yuvaraj ◽  
Peyandi Paraman Mahendran ◽  
Eman Tawfik Hussien

Organic farming could be an all-encompassing generation administration framework that empowers and improves agroecosystem wellbeing, counting biodiversity, natural cycles, and soil biological activity. It stresses the role of management activities in preference to the use of off-farm data, considering that regional conditions require locally adapted systems. This can be achieved using agronomic, biological, and mechanical methods, in equal share to synthetic materials, to carry out any specific role inside the organization. Organic farming is still only a small industry, which represents only 2% of global food sales. However, it is growing in importance in the world. It is hard to get information due to lack of official statistics and the level of confidentiality of systems of organic produce. Soil practices such as crop rotations, organic fertilizers, symbiotic associations, cover crops, inter-cropping, and minimum tillage are central to organic practices. The static arrangements of soil are achieved by soil fauna and vegetation. Besides, cycling of nutrients and energy is enhanced by increasing the retentive abilities of the soil for nutrients and water.


2020 ◽  
Author(s):  
Aušra Marcinkevičienė ◽  
Marina Keidan ◽  
Rita Pupalienė ◽  
Rimantas Velička ◽  
Zita Kriaučiūnienė ◽  
...  

A field experiment was conducted during the 2014–2017 period at Aleksandras Stulginskis University (now—Vytautas Magnus University Agriculture Academy) on a Endocalcaric Endogleyic Luvisol (LV-can.gln) according to the WRB 2014. The three nonchemical weed control methods were explored: (1) thermal (using wet water steam), (2) mechanical (interrow loosening), and (3) self-regulation (smothering). In the thermal and mechanical weed control treatments, winter oilseed rape was grown with an interrow spacing of 48.0 cm and in weed smothering (self-regulation) treatment with an interrow spacing of 12.0 cm. Winter oilseed rape was grown in the soil with a regular humus layer (23–25 cm) and with a thickened humus layer (45–50 cm). Annual weeds predominated in the winter oilseed rape crop. In the soil with both humus layers, regular and thickened, the most efficient weed control method was mechanical weed management both during the autumn (efficacy 26.7–75.1%) and spring (efficacy 37.1–76.7%) growing seasons. Thermal and mechanical weed control in combination with the bio-preparations in droughty years significantly reduced the number of weed seedlings. Dry matter mass of weeds most markedly decreased through the application of the mechanical weed management method.


Sign in / Sign up

Export Citation Format

Share Document