scholarly journals Parametric analysis of modelling properties governing the seismic response of free-standing spent fuel racks

Author(s):  
Alberto Merino ◽  
Luis de ◽  
Arturo González
2019 ◽  
Vol 342 ◽  
pp. 210-218 ◽  
Author(s):  
Alberto González Merino ◽  
Luis Costas ◽  
Arturo González

2014 ◽  
Vol 38 (1) ◽  
pp. 9-23
Author(s):  
Yung-Yen Ko ◽  
Cheng-Hsing Chen ◽  
Hsuan-Chih Yang ◽  
Ya-Han Hsu ◽  
Chin-Cheng Huang

Author(s):  
Daogang Lu ◽  
Yu Liu ◽  
Shu Zheng

Free standing spent fuel storage racks are submerged in water contained with spent fuel pool. During a postulated earthquake, the water surrounding the racks is accelerated and the so-called fluid-structure interaction (FSI) is significantly induced between water, racks and the pool walls[1]. The added mass is an important input parameter for the dynamic structural analysis of the spent fuel storage rack under earthquake[2]. The spent fuel storage rack is different even for the same vendors. Some rack are designed as the honeycomb construction, others are designed as the end-tube-connection construction. Therefore, the added mass for those racks have to be measured for the new rack’s design. More importantly, the added mass is influenced by the layout of the rack in the spent fuel pool. In this paper, an experiment is carried out to measure the added mass by free vibration test. The measured fluid force of the rack is analyzed by Fourier analysis to derive its vibration frequency. The added mass is then evaluated by the vibration frequency in the air and water. Moreover, a two dimensional CFD model of the spent fuel rack immersed in the water tank is built. The fluid force is obtained by a transient analysis with the help of dynamics mesh method.


2009 ◽  
Vol 239 (1) ◽  
pp. 158-168 ◽  
Author(s):  
Yung-Yen Ko ◽  
Shang-Yi Hsu ◽  
Cheng-Hsing Chen

2005 ◽  
Vol 25 (4) ◽  
pp. 303-315 ◽  
Author(s):  
Konstantia Makra ◽  
Francisco J. Chávez-García ◽  
Dimitrios Raptakis ◽  
Kyriazis Pitilakis

2018 ◽  
Vol 2018 ◽  
pp. 1-20
Author(s):  
Yu-ping Kuang ◽  
Xin-liang Jiang ◽  
Nan Jiang

This paper conducts a parametric study on the seismic response of multistorey bidirectional eccentric structures from elastic stage to inelastic stage. Based on a simplified multistorey bidirectional eccentric model composed of bidirectional lateral load-resisting members, a general law is proposed for three-stage natural frequency variation behaviour from elastic stage to inelastic stage of eccentric frame structures with different layers. Different simplification treatments are conducted on each stage and the three stable parameter analysis stages are defined. The corresponding dynamic stiffness matrices and motion equations in different loading stages are derived. On this basis, a parametric analysis of seismic response of a three-storey bidirectional regular eccentric structure from elastic stage to inelastic stage is conducted. Effects of the uncoupled torsion to lateral frequency ratios (Ω) and bidirectional eccentricities on the seismic responses are investigated. The results reveal that as Ω increases, translational displacement in the load direction first decreases and then increases; meanwhile, the displacement perpendicular to load direction and torsion displacement first rise and then decrease sharply. When Ω=1.1, the coupling effect between the translation in the load direction and the torsion is at its strongest condition. Increasing the eccentricities leads to a decrease in the displacement in the load direction as well as an increase in the displacement perpendicular to load direction and torsion displacement. Variation regularity of inelastic seismic response is remarkably different from that in elastic stage. The lateral-torsional coupling effect of the bidirectional eccentric structure is closely related to both the period ratio and the bidirectional eccentricities.


Author(s):  
Carmine Lima ◽  
Enzo Martinelli

This paper is intended at highlighting the main mechanical parameters controlling the behavior of the so-called "acceleration-sensitive" Non-Structural Components (NSCs). In the first part a short review of the current state of knowledge and the critical issues related to the prediction of the seismic response of NSCs is reported. Then, the paper presents the results of a numerical parametric analysis intended to capture the key features of the dynamic response of a two-degree-of-freedom (2DOF) system which is supposed to be representative of both the main structure and the "non-structural" component (NSC). Particularly, it allows to simulate the coupled behaviour of both main structure and NSC and evaluating their response. The main parameters controlling the dynamic response of NSCs emerge from this study, which could pave the way towards formulating more mechanically consistent relationships for evaluating the maximum accelerations induced by seismic shakings on NSCs.


Sign in / Sign up

Export Citation Format

Share Document