Newly Described Clostridial Diseases of the Gastrointestinal Tract: Clostridium Perfringens Enterotoxin-Associated Diarrhea and Neutropenic Enterocolitis Due to Clostridium Septicum

Author(s):  
S.P. Borriello
Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 266
Author(s):  
Thea Neumann ◽  
Maren Krüger ◽  
Jasmin Weisemann ◽  
Stefan Mahrhold ◽  
Daniel Stern ◽  
...  

Clostridium perfringens enterotoxin (CPE) regularly causes food poisoning and antibiotic-associated diarrhea; therefore, reliable toxin detection is crucial. To this aim, we explored stationary and mobile strategies to detect CPE either exclusively by monoclonal antibodies (mAbs) or, alternatively, by toxin-enrichment via the cellular receptor of CPE, claudin-4, and mAb detection. Among the newly generated mAbs, we identified nine CPE-specific mAbs targeting five distinct epitopes, among them mAbs recognizing CPE bound to claudin-4 or neutralizing CPE activity in vitro. In surface plasmon resonance experiments, all mAbs and claudin-4 revealed excellent affinities towards CPE, ranging from 0.05 to 2.3 nM. Integrated into sandwich enzyme-linked immunosorbent assays (ELISAs), the most sensitive mAb/mAb and claudin-4/mAb combinations achieved similar detection limits of 0.3 pg/mL and 1.0 pg/mL, respectively, specifically detecting recombinant CPE from spiked feces and native CPE from 30 different C. perfringens culture supernatants. The implementation of mAb- and receptor-based ELISAs into a mobile detection platform enabled the fast detection of CPE, which will be helpful in clinical laboratories to diagnose diarrhea of assumed bacterial origin. In conclusion, we successfully employed an endogenous receptor and novel high affinity mAbs for highly sensitive and specific CPE-detection. These tools will be useful for both basic and applied research.


1997 ◽  
Vol 74 (3) ◽  
pp. 143-147 ◽  
Author(s):  
M. J. M. Pouwels ◽  
J. P. Donnelly ◽  
J. M. M. Raemaekers ◽  
P. E. Verweij ◽  
B. E. de Pauw

2014 ◽  
Vol 174 (3-4) ◽  
pp. 463-473 ◽  
Author(s):  
Yasushi Minamoto ◽  
Naila Dhanani ◽  
Melissa E. Markel ◽  
Jörg M. Steiner ◽  
Jan S. Suchodolski

2005 ◽  
Vol 71 (7) ◽  
pp. 3911-3916 ◽  
Author(s):  
Mark G. Wise ◽  
Gregory R. Siragusa

ABSTRACT Strains of Clostridium perfringens are a frequent cause of food-borne disease and gas gangrene and are also associated with necrotic enteritis in chickens. To detect and quantify the levels of C. perfringens in the chicken gastrointestinal tract, a quantitative real-time PCR assay utilizing a fluorogenic, hydrolysis-type probe was developed and utilized to assay material retrieved from the broiler chicken cecum and ileum. Primers and probe were selected following an alignment of 16S rDNA sequences from members of cluster I of the genus Clostridium, and proved to be specific for C. perfringens. The assay could detect approximately 50 fg of C. perfringens genomic DNA and approximately 20 cells in pure culture. Measurements of the analytical sensitivity determined with spiked intestinal contents indicated that the consistent limit of detection with ileal samples was approximately 102 CFU/g of ileal material, but only about 104 CFU/g of cecal samples. The decreased sensitivity with the cecal samples was due to the presence of an unidentified chemical PCR inhibitor(s) in the cecal DNA purifications. The assay was utilized to rapidly detect and quantify C. perfringens levels in the gut tract of broiler chickens reared without supplementary growth-promoting antibiotics that manifested symptoms of necrotic enteritis. The results illustrated that quantitative real-time PCR correlates well with quantification via standard plate counts in samples taken from the ileal region of the gastrointestinal tract.


2020 ◽  
Vol 13 ◽  
pp. 117863612093151
Author(s):  
Bruce McClane ◽  
Archana Shrestha

Clostridium perfringens enterotoxin (CPE) is responsible for the symptoms of common intestinal infections due to C. perfringens type F isolates. CPE is a pore-forming toxin that uses certain claudins as a receptor. Previous studies showed that, in enterocyte-like Caco-2 cells, low CPE concentrations cause caspase 3-mediated apoptosis but high CPE concentrations cause necrosis. The recent work published in mBio by Shrestha, Mehdizadeh Gohari, and McClane determined that RIP1 and RIP3 are involved in both CPE-mediated apoptosis and necrosis in Caco-2 cells. Furthermore, mixed lineage kinase-domain (MLKL) oligomerization was shown to be important for necrosis caused by CPE, identifying this necrosis as programmed necroptosis. In addition, calpain activation due to Ca2+ influx through the CPE pore was identified as a critical intermediate step for MLKL oligomerization and, thus, CPE-induced necroptosis. These findings may have applicability to understand the action of some other pore-forming toxins that induce necroptosis and may also be important for understanding CPE action in vivo.


Sign in / Sign up

Export Citation Format

Share Document