targeting peptide
Recently Published Documents


TOTAL DOCUMENTS

447
(FIVE YEARS 155)

H-INDEX

40
(FIVE YEARS 8)

RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 221-227
Author(s):  
Jia Su ◽  
Chao Liu ◽  
Haohao Bai ◽  
Wei Cong ◽  
Hua Tang ◽  
...  

13-Aminomethyl-15-thiomatrine (M19) previously developed by our research group was a promising candidate for novel anti-osteoporosis drug development.


2022 ◽  
Vol 145 ◽  
pp. 112469
Author(s):  
Luciana Kovacs ◽  
Ryan A. Davis ◽  
Tanushree Ganguly ◽  
Roger Chammas ◽  
Julie L. Sutcliffe

2021 ◽  
Author(s):  
Anni Lepland ◽  
Alessio Malfanti ◽  
Uku Haljasorg ◽  
Eliana Asciutto ◽  
Monica Pickholz ◽  
...  

Abstract Although many studies have explored the depletion of tumour-associated macrophages (TAMs) as a therapeutic strategy for solid tumours, currently available compounds suffer from poor efficacy and dose-limiting side effects. Here, we developed a novel TAM-depleting agent ("OximUNO") that specifically targets CD206+ TAMs and demonstrated efficacy in triple negative breast cancer (TNBC) mouse models. OximUNO comprises a star-shaped polyglutamate (St-PGA) decorated with the CD206-targeting peptide mUNO that carries the chemotherapeutic drug doxorubicin (DOX). In TNBC models, a fluorescently-labelled mUNO-decorated St-PGA homed to CD206+ TAMs within primary lesions and metastases. OximUNO exhibited no acute liver or kidney toxicity in vivo. Treatment with OximUNO reduced the progression of primary tumour lesions and pulmonary metastases, significantly diminished the number of CD206+ TAMs and increased the CD8/FOXP3 expression ratio (demonstrating immunostimulation). Our findings suggest the potential benefit of OximUNO as a TAM-depleting agent for TNBC treatment. Importantly, our studies also represent the first report of a peptide-targeted St-PGA as a targeted therapeutic nanoconjugate.


2021 ◽  
Author(s):  
Anni Lepland ◽  
Alessio Malfanti ◽  
Uku Haljasorg ◽  
Eliana Asciutto ◽  
Monica Pickholz ◽  
...  

Although many studies have explored the depletion of tumour-associated macrophages (TAMs) as a therapeutic strategy for solid tumours, currently available compounds suffer from poor efficacy and dose-limiting side effects. Here, we developed a novel TAM-depleting agent ("OximUNO") that specifically targets CD206+ TAMs and demonstrated efficacy in triple negative breast cancer (TNBC) mouse models. OximUNO comprises a star-shaped polyglutamate (St-PGA) decorated with the CD206-targeting peptide mUNO that carries the chemotherapeutic drug doxorubicin (DOX). In TNBC models, a fluorescently-labelled mUNO-decorated St-PGA homed to CD206+ TAMs within primary lesions and metastases. OximUNO exhibited no acute liver or kidney toxicity in vivo. Treatment with OximUNO reduced the progression of primary tumour lesions and pulmonary metastases, significantly diminished the number of CD206+ TAMs and increased the CD8/FOXP3 expression ratio (demonstrating immunostimulation). Our findings suggest the potential benefit of OximUNO as a TAM-depleting agent for TNBC treatment. Importantly, our studies also represent the first report of a peptide-targeted St-PGA as a targeted therapeutic nanoconjugate.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Ronnie LaMastro ◽  
Noel Vera-Gonzalez ◽  
Kayla Campbell ◽  
Anita Shukla

Candida albicans infections can be challenging to treat, as current antifungal drugs exhibit poor water solubility and host toxicity. To overcome these issues, new methods of drug delivery are needed. Liposomes have been shown to be an effective method for administrating antifungals and can increase bioavailability and solubility while decreasing toxicity. However, existing antifungal liposomal formulations lack infection specificity. For example, AmBisome, a liposomal formulation of amphotericin B, relies on passive accumulation to infection sites. We have developed antifungal liposomes that display fungi-targeting moieties to promote interaction with Candida;we predict that these formulations can increase fungal eradication and decrease off-site toxicity. Here, the C. albicans-targeting peptide P-113Q2.10 (AQRHHGYKRQFH), a derivative of the antifungal peptide histatin 5, was incorporated into liposomes via conjugation to palmitic acid (PA). PA-P-113Q2.10 conjugates were synthesized using solid phase peptide synthesis, confirmed by liquid-chromatography-mass spectrometry. Liposomes composed of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine and cholesterol with 1% w/w PA-P-113Q2.10 were formed via thin film-hydration and extrusion, yielding ∼100 nm liposomes with a polydispersity index of ∼0.1. Flow cytometry demonstrated that interaction with C. albicans SC5314 was enhanced for P-113Q2.10 liposomes, increasing from ∼60% in cells incubated with liposomes lacking peptide to ∼79%. These liposomes preferentially interact with C. albicans compared to NIH 3T3 murine fibroblasts; on average, only ∼15% of fibroblasts incubated with liposomes (with and without peptide) showed positive liposome interaction. This liposome formulation has the potential to serve as an antifungal delivery platform that selectively targets C. albicans cells for increased efficacy in treatment of fungal infections.


2021 ◽  
Author(s):  
Xiaoqing Han ◽  
Luopeng Bi ◽  
Yunyun Wu ◽  
Jiao Yan ◽  
Xiaqing Wu ◽  
...  

Abstract Premetastatic niche (PMN) is a prerequisite for initiation of tumor metastasis. Targeting prevention of PMN formation in distant organs is becoming a promising strategy to suppress metastasis of primary tumor. Based on “organotropic metastasis”, melanoma tends to metastasize to lungs, where granulocytic myeloid-derived suppressor cells (G-MDSCs) recruitment in lungs significantly contributes to the PMN formation. Herein, functional exosomes (GExoI) were designed to present pulmonary targeting peptide GFE1 on the membrane and load PI3Kγ inhibitor (IPI549) inside, aiming at suppressing postoperative lung metastasis of melanoma. In postoperative mice model, intravenously injected GExoI could significantly accumulate in lungs and release IPI549 to block G-MDSCs recruitment through interfering with CXCLs/CXCR2/PI3Kγ signaling. The increased percentages of CD4+ T cells and CD8+ T cells in lungs could transform microenvironment from immunosuppression to immunostimulation, leading to metastasis inhibition. This study suggests an effective anti-metastasis strategy of targeting prevention of PMN formation through specifically blocking G-MDSCs recruitment.


2021 ◽  
Vol 1 ◽  
Author(s):  
Troels E. Jeppesen ◽  
Marina Simón ◽  
Josephine Torp ◽  
Line B. S. Knudsen ◽  
Julie Maja Leth ◽  
...  

Fluorine-18 displays almost ideal decay properties for positron emission tomography (PET) and allows for large scale production. As such, simplified methods to radiolabel peptides with fluorine-18 are highly warranted. Chelation of aluminium fluoride-18 toward specific peptides represents one method to achieve this. With the current methods, chelation of aluminium fluoride-18 can be achieved using NOTA-conjugated peptides. However, the heating to 90–100◦C that is required for this chelation approach may be deleterious to the targeting moiety of the probe. Recently, a new chelator, RESCA1, was developed allowing Al18F chelation at room temperature. Here, we optimize the labeling procedure enabling high chelation efficacy of fluoride-18 at 22◦C, even at full batch labeling. The optimized procedure was tested by Al18F-labeling of RESCA1-AE105—a uPAR targeting peptide. NOTA-AE105 was also labeled with Al18F, and the two peptides were compared head-to-head. [18F]AlF-NOTA-AE105 and [18F]AlF-RESCA1-AE105 could be produced in equal radiochemical yields (RCY), radiochemical purities (RCP) and molar activities. Additionally, the two peptides showed comparable binding affinity to uPAR and uptake in cells expressing the uPAR, when evaluated in vitro. Overall, we found that the performances of [18F]AlF-NOTA-AE105 and [18F]AlF-RESCA1-AE105 were grossly comparable, but importantly RESCA1 can be labeled with aluminium fluoride-18 at 22◦C. Consequently, this study showed that RESCA1 is superior to NOTA with respect to Al18F chelation of temperature sensitive molecules, such as thermolabile peptides and proteins as well as that full batch chelation of RESCA1 with fluoride-18 is possible.


2021 ◽  
Author(s):  
Dan Zhu ◽  
Anran Li ◽  
Yunsong Di ◽  
Zhuyuan Wang ◽  
Jingzhan Shi ◽  
...  

Abstract The expression of membrane type-1 matrix metalloproteinase (MT1-MMP) in cancer cells is critical for understanding the development, invasion and metastasis of cancers. In this study, we devised an interference-free surface-enhanced Raman scattering (SERS) nanoprobe with high selectivity and specificity for MT1-MMP. The nanoprobe was comprised of silver core-silica shell nanoparticle with a Raman reporter tag (4-mercaptobenzonitrile) embedded in the interface. Moreover, the nitrile group in 4-mercaptobenzonitrile shows a unique characteristic peak in the Raman-silent region (1800-2800 cm-1), which eliminates spectral overlapping or background interference in the Raman fingerprint region (500-1800 cm-1). After surface modification with a targeting peptide, the nanoprobe allowed visualization and evaluation of MT1-MMP in breast cancer cells via SERS spectrometry. This interference-free, peptide functionalized SERS nanoprobe is supposed to be conducive to early diagnosis and invasive assessment of cancer in clinical settings.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Chong Shen ◽  
Ming Gao ◽  
Haimin Chen ◽  
Yanting Zhan ◽  
Qiumei Lan ◽  
...  

AbstractStimulus-responsive therapy that allows precise imaging-guided therapy is limited for osteoarthritis (OA) therapy due to the selection of proper physiological markers as stimulus. Based on that the over-production of Reactive Oxygen Species (ROS) is associated with the progression in OA, we selected ROS as markers and designed a cartilage targeting and ROS-responsive theranostic nanoprobe that can be used for effective bioimaging and therapy of OA. This nanoprobe was fabricated by using PEG micelles modified with ROS-sensitive thioketal linkers (TK) and cartilage-targeting peptide, termed TKCP, which was then encapsulated with Dexamethasone (DEX) to form TKCP@DEX nanoparticles. Results showed that the nanoprobe can smartly “turn on” in response to excessive ROS and “turn off” in the normal joint. By applying different doses of ROS inducer and ROS inhibitor, this nanoprobe can emit ROS-dependent fluorescence according to the degree of OA severity, helpful to precise disease classification in clinic. Specifically targeting cartilage, TKCP@DEX could effectively respond to ROS and sustained release DEX to remarkably reduce cartilage damage in the OA joints. This smart, sensitive and endogenously activated ROS-responsive nanoprobe is promising for OA theranostics. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document