1 Updated Technologies for Extracting and Formulating Food Colorants

2007 ◽  
pp. 317-342
Keyword(s):  
1993 ◽  
Vol 40 (10) ◽  
pp. 697-701 ◽  
Author(s):  
Kinnosuke ODAKE ◽  
Akikazu HATANAKA ◽  
Tadahiko KAJIWARA ◽  
Yutaka HIGASHIMURA ◽  
Seiichi WADA ◽  
...  

2016 ◽  
Vol 33 (7) ◽  
pp. 1139-1146 ◽  
Author(s):  
Ivana Stachová ◽  
Ivona Lhotská ◽  
Petr Solich ◽  
Dalibor Šatínský

2018 ◽  
Vol 134 (3) ◽  
pp. 165-186 ◽  
Author(s):  
Tom Coultate ◽  
Richard S. Blackburn
Keyword(s):  

2014 ◽  
Vol 68 (6) ◽  
pp. 781-791 ◽  
Author(s):  
Radivoj Petronijevic ◽  
Vesna Matekalo-Sverak ◽  
Aurelija Spiric ◽  
Ilija Vukovic ◽  
Jelena Babic ◽  
...  

The aim of this research was to develop a novel colorimetric method based on mathematical models, by multiple linear regression (MLR), from the CIE L*a*b* measurements and data of the HPLC determination of food colorants. Calibration set of 10 production batches of finely grinded cooked sausage with food colorants added was manufactured in industrial conditions as follows: one control batch and 9 products with various quantities of added food colorants: E120 (3.4, 7.5 and 12.5 mg/kg), E 124 (5.0, 15.0, 25.0 mg/kg) and E 129 (5.0, 15.0, 25.0 mg/kg). The estimation of the added food colorants was assessed by measuring L*, a*, b* parameters of cross-section. The quantification of food colorants was achieved by HPLC-PDA. Food colorants were extracted from meat products using Accelerated Solvent Extraction (ASE). Quantification of food colorants was achieved in the range from 1 to 100 mg / kg, and recovery values were from 76.15% to 107.04%, for E 120, from 97.61% to 101.03%, for E 124 and from 99.91% to 101.67%, for E 129. Correlation of the results obtained using HPLC and colorimetric measuring data was assessed by Multiple Linear Regression (MLR). The results from colorimetric and chromatographic determinations in four experimental batches (three batches with different quantities of food colorants and one control batch) were used for calibration. Coefficients of determination (R2) for linear models in experimental batches were 0.954, for E 124, 0.987, for E 120 and 0.993, for E 129. Correlation functions of food colorant quantities and corresponding L*a*b* values were established. The obtained mathematical models were tested for the estimation of the content of dyes in 21 samples of finely grinded cooked sausages purchased in retail stores. Food colorants were confirmed in 20 samples (95.24 %), and one sample (4.76 %) did not contain any of these compounds. Out of the positive samples, sixteen samples (80.00 %) contained E 120, while four samples (20.00 %) contained E 129. Food colorant E124 was not established in any of the analyzed samples. Colorimetric CIE L*a*b* method might be used during sensory evaluation of meat products for the assessment of the added food colorants.


2018 ◽  
Vol 22 (2) ◽  
pp. 111
Author(s):  
Alfi Asben ◽  
Deivy Andhika Permata

Angka pigment is one of food colorants that safe to used. It can be produced by subtrate that contain of sago hampas. The objective of the research was to get the appropriate of sago hampas particle size to produce the angkak pigment. The steps to produce of angkak pigment were (a) Preparation of raw materials (sago hampas and rice flour substrate with comparison 1:1 (12.5 : 12.5). This research used  three treatments of sago hampas particle size (40-60 mesh, 60-80 mesh, and >80 mesh) with 3 replications, (b) Preparation of Monascus purpureus culture, (c) Solid state fermentation to produce angkak pigment using M. purpureus. The results of the research showed that the substrate with hampas sago particle size 40-60 mesh produced  the best angkak pigment. The angkak pigment obtain the highest color intensity on λ 400 nm, λ 470 nm, λ 500 nm were 6004, 5110 and 3650 respectively, the highest used starch, antioxidant, toxicity, lovastatin and spore of  M.  purpureus were 11.07%, 45.95%, 1719.86 (LC50), 79 ppm, and 3.4 x 103 CPU/g respectively.


Sign in / Sign up

Export Citation Format

Share Document