scholarly journals PENGARUH UKURAN PARTIKEL AMPAS SAGU DALAM PRODUKSI PIGMEN ANGKAK MENGGUNAKAN Monascus purpureus

2018 ◽  
Vol 22 (2) ◽  
pp. 111
Author(s):  
Alfi Asben ◽  
Deivy Andhika Permata

Angka pigment is one of food colorants that safe to used. It can be produced by subtrate that contain of sago hampas. The objective of the research was to get the appropriate of sago hampas particle size to produce the angkak pigment. The steps to produce of angkak pigment were (a) Preparation of raw materials (sago hampas and rice flour substrate with comparison 1:1 (12.5 : 12.5). This research used  three treatments of sago hampas particle size (40-60 mesh, 60-80 mesh, and >80 mesh) with 3 replications, (b) Preparation of Monascus purpureus culture, (c) Solid state fermentation to produce angkak pigment using M. purpureus. The results of the research showed that the substrate with hampas sago particle size 40-60 mesh produced  the best angkak pigment. The angkak pigment obtain the highest color intensity on λ 400 nm, λ 470 nm, λ 500 nm were 6004, 5110 and 3650 respectively, the highest used starch, antioxidant, toxicity, lovastatin and spore of  M.  purpureus were 11.07%, 45.95%, 1719.86 (LC50), 79 ppm, and 3.4 x 103 CPU/g respectively.

1996 ◽  
Vol 18 (2) ◽  
pp. 121-125 ◽  
Author(s):  
M.P. Nandakumar ◽  
M.S. Thakur ◽  
K.S.M.S. Raghavarao ◽  
N.P. Ghildyal

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Mohammad Faseleh Jahromi ◽  
Juan Boo Liang ◽  
Yin Wan Ho ◽  
Rosfarizan Mohamad ◽  
Yong Meng Goh ◽  
...  

Ability of two strains ofAspergillus terreus(ATCC 74135 and ATCC 20542) for production of lovastatin in solid state fermentation (SSF) using rice straw (RS) and oil palm frond (OPF) was investigated. Results showed that RS is a better substrate for production of lovastatin in SSF. Maximum production of lovastatin has been obtained usingA. terreusATCC 74135 and RS as substrate without additional nitrogen source (157.07 mg/kg dry matter (DM)). Although additional nitrogen source has no benefit effect on enhancing the lovastatin production using RS substrate, it improved the lovastatin production using OPF with maximum production of 70.17 and 63.76 mg/kg DM forA. terreusATCC 20542 andA. terreusATCC 74135, respectively (soybean meal as nitrogen source). Incubation temperature, moisture content, and particle size had shown significant effect on lovastatin production (P<0.01) and inoculums size and pH had no significant effect on lovastatin production (P>0.05). Results also have shown that pH 6, 25°C incubation temperature, 1.4 to 2 mm particle size, 50% initial moisture content, and 8 days fermentation time are the best conditions for lovastatin production in SSF. Maximum production of lovastatin using optimized condition was 175.85 and 260.85 mg/kg DM forA. terreusATCC 20542 and ATCC 74135, respectively, using RS as substrate.


2013 ◽  
Vol 14 (1) ◽  
pp. 67-74
Author(s):  
Bina Gautam ◽  
Tika B Karki ◽  
Om Prakash Panta

Amylase is an amylolytic enzyme used in food industry which is generally produced by Aspergillus spp. under solid state fermentation. The present study is concerned with the isolation, screening and selection of suitable strains of Aspergillus spp. and optimization of cultural conditions for the biosynthesis of amylase. Rice and wheat brans were used as substrates which are readily available inexpensive raw materials for amylase production. From 85 samples of rice and wheat grains, 55 colonies obtained on potato dextrose agar (PDA) were suspected to be Aspergillus oryzae and only 35 colonies possessed the morphological characteristics similar to that of A. oryzae indicating the isolates were most likely the strains of A. oryzae. Of all the fungal isolates of Aspergillus spps., Asp.31 gave maximum production of amylase (720.782 IUgds-1) in solid state fermentation media. This strain was selected as a parental strain for optimization for cultural conditions. The obtained data were analyzed using SPSS- 11.5 program. Of all the substrates (rice bran, wheat bran and their mixture), rice bran was the best for producing amylase of highest activity 611.614 IUgds-1.The highest enzyme activity of 698.749 IUgds-1 was observed at 50% initial moisture level of the substrate. The optimum temperature was 25°C for producing the crude amylase enzyme with amylase activity of 577.757 IUgds-1. Nepal Journal of Science and Technology Vol. 14, No. 1 (2013) 67-74 DOI: http://dx.doi.org/10.3126/njst.v14i1.8924


2016 ◽  
Vol 3 (02) ◽  
Author(s):  
Cornelius Damar Hanung ◽  
Ronald Osmond ◽  
Hendro Risdianto ◽  
Sri Harjati Suhardi ◽  
Tjandra Setiadi

White rot fungi of Marasmius sp. is a fungus which produce laccase in high activity. Laccase is one of the ligninolityc enzymes that capable to degrade lignin. This ability can be used for the pretreatment of lignocellulosic materials in the bioethanol production. Laccase was produced in flask by batch process using Solid State Fermentation (SSF). The optimisation was conducted by statistically of full factorial design. The particle size, moisture content, and Cu concentration were investigated in this study. Rice straw was used as solid substrate and the glycerol was used as the carbon sources in modified Kirk medium. The results showed that particle size of rice straw did not affect significantly to the enzyme activity. The highest laccase activity of 4.45 IU/g dry weight was obtained at the moisture content of 61% and Cu concentration of 0.1 mM.Keywords: laccase, Marasmius sp., optimisation, rice straw, solid state fermentation ABSTRAKJamur pelapuk putih, Marasmius sp. merupakan jamur yang menghasilkan enzim lakase dengan aktivitas tinggi. Lakase merupakan enzim ligninolitik yang dapat mendegradasi lignin. Kemampuan ini dapat digunakan untuk proses pengolahan awal bahan lignoselulosa pada pembuatan bioetanol. Produksi lakase dilakukan dalam labu dengan modus batch menggunakan fermentasi kultur padat. Optimisasi produksi enzim lakase dengan metode fermentasi padat dilakukan dengan  rancangan percobaan faktorial penuh. Pengaruh ukuran partikel, kelembapan, dan konsentrasi Cu diuji dengan medium penyangga jerami dengan menambahkan gliserol dalam medium Kirk termodifikasi sebagai sumber karbon. Penelitian ini menunjukkan bahwa ukuran jerami tidak berpengaruh signifikan terhadap aktivitas enzim. Aktivitas enzim lakase maksimum terjadi pada saat kelembapan 61% dan konsentrasi Cu 0,1 mM dengan aktivitas enzim lakase/berat kering tertinggi mencapai 4,45 IU/g.Kata kunci: lakase, Marasmius sp., optimisasi, jerami, fermentasi kultur padat


2018 ◽  
Vol 37 (2) ◽  
pp. 149-156 ◽  
Author(s):  
C. Marzo ◽  
A.B. Díaz ◽  
I. Caro ◽  
A. Blandino

Nowadays, significant amounts of agro-industrial wastes are discarded by industries; however, they represent interesting raw materials for the production of high-added value products. In this regard, orange peels (ORA) and exhausted sugar beet cossettes (ESBC) have turned out to be promising raw materials for hydrolytic enzymes production by solid state fermentation (SSF) and also a source of sugars which could be fermented to different high-added value products. The maximum activities of xylanase and exo-polygalacturonase (exo-PG) measured in the enzymatic extracts obtained after the SSF of ORA were 31,000 U·kg-1 and 17,600 U·kg-1, respectively; while for ESBC the maximum values reached were 35,000 U·kg-1 and 28,000 U·kg-1, respectively. The enzymatic extracts obtained in the SSF experiments were also employed for the hydrolysis of ORA and ESBC. Furthermore, it was found that extracts obtained from SSF of ORA, supplemented with commercial cellulase, were more efficient for the hydrolysis of ORA and ESBC than a commercial enzyme cocktail typically used for this purpose. In this case, maximum reducing sugars concentrations of 57 and 47 g·L-1 were measured after the enzymatic hydrolysis of ESBC and ORA, respectively.


2020 ◽  
pp. 405-414
Author(s):  
Veronika Valentinovna Tarnopol’skaya ◽  
Tat'yana Vasil'yevna Ryazanova ◽  
Natal'ya Yur'yevna Demidenko ◽  
Oksana Nikolayevna Eryomenko

A technology for pilot production of feed products via microbiological conversion of plant raw materials (mixed substrate of pine sawdust and vegetative part of Jerusalem artichoke) by Plerotus ostreatus PO-4.1 and Pleurotus djamor PD-3.2 strains is developed. The technology includes hydrodynamic activation of substrate at the seed stock production stage. The overall technology includes three key stages: submerged fermentation of pure cultures of production strains; submerged-solid phase fermentation of hydrodynamicly activated plant raw materials for seed stock production; solid-state fermentation of mechanically ground plant substrate for feed products production. A successful approbation of submerged-solid state fermentation of production strains on media containing 3% of hydrodynamicly activated raw materials allowed for obtaining seed stock with 14.5 g/l yield of submerged mycelium biomass fully adopted for this type of substrate. Further use of this seed stock biomass at the solid state fermentation stage makes the overall process duration three times shorter compared to existing technologies for direct wood waste bioconversion. The pilot plant results show valuable practicability of plant raw material hydrodynamic activation with the purpose of enhancing its bioaccessibility with consequent increase in degree of microbiological conversion. The product of bioconversion contains 14–16% of protein, biofiber, vitamins and minerals and could be considered for successful use as feed by agricultural enterprises.


2019 ◽  
Vol 55 (6) ◽  
pp. 2291-2302 ◽  
Author(s):  
A. Jalalian-Khakshour ◽  
C. O. Phillips ◽  
L. Jackson ◽  
T. O. Dunlop ◽  
S. Margadonna ◽  
...  

Abstract In this work, the effect of varying the size of the precursor raw materials SiO2 and ZrO2 in the solid-state synthesis of NASICON in the form Na3Zr2Si2PO12 was studied. Nanoscale and macro-scale precursor materials were selected for comparison purposes, and a range of sintering times were examined (10, 24 and 40 h) at a temperature of 1230 °C. Na3Zr2Si2PO12 pellets produced from nanopowder precursors were found to produce substantially higher ionic conductivities, with improved morphology and higher density than those produced from larger micron-scaled precursors. The nanoparticle precursors were shown to give a maximum ionic conductivity of 1.16 × 10−3 S cm−1 when sintered at 1230 °C for 40 h, in the higher range of published solid-state Na3Zr2Si2PO12 conductivities. The macro-precursors gave lower ionic conductivity of 0.62 × 10−3 S cm−1 under the same processing conditions. Most current authors do not quote or consider the precursor particle size for solid-state synthesis of Na3Zr2Si2PO12. This study shows the importance of precursor powder particle size in the microstructure and performance of Na3Zr2Si2PO12 during solid-state synthesis and offers a route to improved predictability and consistency of the manufacturing process.


Sign in / Sign up

Export Citation Format

Share Document