Listeria: Risk Assessment, Regulatory Control, and Economic Impact

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 405
Author(s):  
Yaxin Sang ◽  
Juan-Carlos Mejuto ◽  
Jianbo Xiao ◽  
Jesus Simal-Gandara

Agro-industries should adopt effective strategies to use agrochemicals such as glyphosate herbicides cautiously in order to protect public health. This entails careful testing and risk assessment of available choices, and also educating farmers and users with mitigation strategies in ecosystem protection and sustainable development. The key to success in this endeavour is using scientific research on biological pest control, organic farming and regulatory control, etc., for new developments in food production and safety, and for environmental protection. Education and research is of paramount importance for food and nutrition security in the shadow of climate change, and their consequences in food production and consumption safety and sustainability. This review, therefore, diagnoses on the use of glyphosate and the associated development of glyphosate-resistant weeds. It also deals with the risk assessment on human health of glyphosate formulations through environment and dietary exposures based on the impact of glyphosate and its metabolite AMPA—(aminomethyl)phosphonic acid—on water and food. All this to setup further conclusions and recommendations on the regulated use of glyphosate and how to mitigate the adverse effects.


2019 ◽  
Vol 11 (1) ◽  
pp. 200 ◽  
Author(s):  
Ali Al-Hemoud ◽  
Ali Al-Dousari ◽  
Raafat Misak ◽  
Mane Al-Sudairawi ◽  
Adil Naseeb ◽  
...  

There is a lack of published research on the economic effect and the risk associated with sand and dust storms (SDS) worldwide. The objectives of this study are to estimate the economic impact of SDS on the oil and gas industry in Kuwait, to estimate a risk index for each loss, and to recommend a sustainable system for the mitigation of the damaging effects and economic losses of infrastructures. Hot spots of wind erosion, wind corridors, and dust frequency and severity formed the basis to locate the most susceptible oil and gas fields and operations. Ten sectors with potential loss vulnerabilities were evaluated: exploration, drilling, production, gas, marine, soil remediation, project management, water handling, maintenance, and research and development. Sand encroachment, although not a sector per se, was also considered. The results indicate that sand, and to lesser extent dust, are damaging and costly to the oil and gas infrastructure of Kuwait, with an economic cost estimation of US$9.36 million, a total of 5159 nonproductive lost hours, and 347,310 m3 of annual sand removal. A risk assessment identified three sectors with the highest risk indices (RI): drilling (RI = 25), project management (RI = 20), and maintenance (RI = 16). Sand encroachment also constituted a high risk (RI = 25). Mitigation of sand storms using a hybrid biological–mechanical system was shown to be cost-effective with an equivalent saving of 4.6 years of sand encroachment. The hazard implications of sand storm events continue to be a major concern for policy-makers given their detrimental economic impacts, and require that government officials wisely allocate investment budgets to effectively control and mitigate their damaging effects.


Author(s):  
Günther Schauberger ◽  
Martin Schönhart ◽  
Werner Zollitsch ◽  
Stefan J. Hörtenhuber ◽  
Leopold Kirner ◽  
...  

In the last decades farm animals kept in confined and mechanically ventilated livestock buildings are increasingly confronted with heat stress (HS) due to global warming. These adverse conditions cause a depression of animal health and welfare and a reduction of the performance up to an increase of the mortality. To facilitate sound management decisions, livestock farmers need relevant arguments, which quantify the expected economic risk and the corresponding uncertainty. The economic risk was determined for the pig fattening sector based on the probability of HS and the calculated decrease in the gross margin. The model calculation for confined livestock buildings showed, that HS indices calculated by easily available meteorological parameters can be used for assessment quantification of indoor HS, which is so far difficult to determine. These weather-related HS indices can be applied not only for an economic risk assessment but also for a weather-index based insurance for livestock farms. Based on the temporal trend between 1981 and 2017, a simple model was derived to assess the likelihood of HS for 2020 and 2030. Due to global warming, the return period for a 90-percentile HS index is reduced from 10 years in 2020 to 3-4 years in 2030. The economic impact of HS on livestock farms was calculated by the relationship between an HS index based on the temperature-humidity index (THI) and the reduction of the gross margin. From the likelihood of the HS and this economic impact function, the probability of the economic risk could be determined. The reduction of the gross margin for a 10 year return period was determined for 1980 with 0.27 € per year and animal place and increased by the 20-fold to 5.13 € per year and animal place in 2030.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 122
Author(s):  
Günther Schauberger ◽  
Martin Schönhart ◽  
Werner Zollitsch ◽  
Stefan J. Hörtenhuber ◽  
Leopold Kirner ◽  
...  

In the last decades, farm animals kept in confined and mechanically ventilated livestock buildings have been increasingly confronted with heat stress (HS) due to global warming. These adverse conditions cause a depression of animal health and welfare and a reduction of the performance up to an increase in mortality. To facilitate sound management decisions, livestock farmers need relevant arguments, which quantify the expected economic risk and the corresponding uncertainty. The economic risk was determined for the pig fattening sector based on the probability of HS and the calculated decrease in gross margin. The model calculation for confined livestock buildings showed that HS indices calculated by easily available meteorological parameters can be used for assessment quantification of indoor HS, which has been difficult to determine. These weather-related HS indices can be applied not only for an economic risk assessment but also for weather-index based insurance for livestock farms. Based on the temporal trend between 1981 and 2017, a simple model was derived to assess the likelihood of HS for 2020 and 2030. Due to global warming, the return period for a 90-percentile HS index is reduced from 10 years in 2020 to 3–4 years in 2030. The economic impact of HS on livestock farms was calculated by the relationship between an HS index based on the temperature-humidity index (THI) and the reduction of gross margin. From the likelihood of HS and this economic impact function, the probability of the economic risk was determined. The reduction of the gross margin for a 10-year return period was determined for 1980 with 0.27 € per year per animal place and increased by 20-fold to 5.13 € per year per animal place in 2030.


Climate ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 116
Author(s):  
Saman Armal ◽  
Jeremy R. Porter ◽  
Brett Lingle ◽  
Ziyan Chu ◽  
Michael L. Marston ◽  
...  

Hurricanes and flood-related events cause more direct economic damage than any other type of natural disaster. In the United States, that damage totals more than USD 1 trillion in damages since 1980. On average, direct flood losses have risen from USD 4 billion annually in the 1980s to roughly USD 17 billion annually from 2010 to 2018. Despite flooding’s tremendous economic impact on US properties and communities, current estimates of expected damages are lacking due to the fact that flood risk in many parts of the US is unidentified, underestimated, or available models associated with high quality assessment tools are proprietary. This study introduces an economic-focused Environmental Impact Assessment (EIA) approach that builds upon an our existing understanding of prior assessment methods by taking advantage of a newly available, climate adjusted, parcel-level flood risk assessment model (First Street Foundation, 2020a and 2020b) in order to quantify property level economic impacts today, and into the climate adjusted future, using the Intergovernmental Panel on Climate Change’s (IPCC) Representative Concentration Pathways (RCPs) and NASA’s Global Climate Model ensemble (CMIP5). This approach represents a first of its kind—a publicly available high precision flood risk assessment tool at the property level developed completely with open data sources and open methods. The economic impact assessment presented here has been carried out using residential buildings in New Jersey as a testbed; however, the environmental assessment tool on which it is based is a national scale property level flood assessment model at a 3 m resolution. As evidence of the reliability of the EIA tool, the 2020 estimated economic impact (USD 5481 annual expectation) was compared to actual average per claim-year NFIP payouts from flooding and found an average of USD 5540 over the life of the program (difference of less than USD 100). Additionally, the tool finds a 41.4% increase in average economic flood damage through the year 2050 when environmental change is included in the model.


1998 ◽  
Vol 62 (10) ◽  
pp. 756-761 ◽  
Author(s):  
CW Douglass
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document