Solid Freeform Fabrication of Tissue Engineering Scaffolds

2005 ◽  
pp. 139-153 ◽  
Author(s):  
Tien-Min Chu
2002 ◽  
Vol 758 ◽  
Author(s):  
Renji Zhang ◽  
Yongnian Yan ◽  
Feng Lin

ABSTRACTTissue engineering tries to grow replacement tissues to repair damaged bones. In this paper, the fabrication technology of Multi-nozzle Deposition Manufacturing (MDM) was adopted to fabricate scaffolds of a tissue engineered bone at low temperature. The composite of poly(L-lactic acid) and tri-calcium phosphate (TCP) was chosen to form bone tissue engineering scaffolds. The new computer aided manufacturing process can make porous PLLA/TCP scaffolds. A new surface processing technology of apatite coating on bone tissue engineered scaffolds was also adopted. This digital forming technology was based on rapid prototyping (RP), in which a digital droplets assembly technology was introduced. The MDM technology of 4 nozzles was developed based on the layer-by-layer manufacturing principle of Solid Freeform Fabrication (SFF) in our laboratory. The bone scaffolds made by the multi-nozzle deposition process in the MDM system have good biocompatibility and bone conductive properties as a molecular scaffold for bone morphogenic protein (BMP) in the implantation experiment of repairing segment defects in rabbits' and dogs' radiuses.


2002 ◽  
Vol 758 ◽  
Author(s):  
Suman Das ◽  
Scott J. Hollister ◽  
Colleen Flanagan ◽  
Adebisi Adewunmi ◽  
Karlin Bark ◽  
...  

ABSTRACTAdvanced and novel fabrication methods are needed to build complex three-dimensional scaffolds that incorporate multiple functionally graded biomaterials with a porous internal architecture that will enable the simultaneous growth of multiple tissues, tissue interfaces and blood vessels. The aim of this research is to develop, demonstrate and characterize techniques for fabricating such scaffolds by combining solid freeform fabrication and computational design methods. When fully developed, such techniques are expected to enable the fabrication of tissue engineering scaffolds endowed with functionally graded material composition and porosity exhibiting sharp or smooth gradients. As a first step towards realizing this goal, scaffolds with periodic cellular and biomimetic architectures were designed and fabricated using selective laser sintering in Nylon-6, a biocompatible polymer. Results of bio-compatibility and in vivo implantation studies conducted on these scaffolds are reported.


Author(s):  
Daniel L. Cohen ◽  
Evan Malone ◽  
Hod Lipson ◽  
Lawrence J. Bonassar

A major challenge in orthopaedic tissue engineering is the generation of cell-seeded implants with structures that mimic native tissue, both in terms of anatomic geometries and intratissue cell distributions. By combining the strengths of injection molding tissue engineering with those of Solid Freeform Fabrication (SFF), three-dimensional pre-seeded implants were fabricated without custom-tooling, enabling efficient production of patient-specific implants. The incorporation of SFF technology also enables the fabrication of geometrically complex, multiple-material implants with spatially heterogeneous cell distributions that could not otherwise be produced. Using a custom-built robotic SFF platform and gel deposition tools, alginate hydrogel was used with calcium sulfate as a crosslinking agent to produce pre-seeded living implants of arbitrary geometries. The process was determined to be sterile and viable at 94±5%. The GAG production was found to be about half that of a similarly molded samples. The compressive elastic modulus was determined to be 1.462±0.113 kPa.


Author(s):  
Jin-Hyung Shim ◽  
Jong Young Kim ◽  
Kyung Shin Kang ◽  
Jung Kyu Park ◽  
Sei Kwang Hahn ◽  
...  

Tissue engineering is an interdisciplinary field that focuses on restoring and repairing tissues or organs. Cells, scaffolds, and biomolecules are recognized as three main components of tissue engineering. Solid freeform fabrication (SFF) technology is required to fabricate three-dimensional (3D) porous scaffolds to provide a 3D environment for cellular activity. SFF technology is especially advantageous for achieving a fully interconnected, porous scaffold. Bone morphogenic protein-2 (BMP-2), an important biomolecule, is widely used in bone tissue engineering to enhance bone regeneration activity. However, methods for the direct incorporation of intact BMP-2 within 3D scaffolds are rare. In this work, 3D porous scaffolds with poly(lactic-co-glycolic acid) chemically grafted hyaluronic acid (HA-PLGA), in which intact BMP-2 was directly encapsulated, were successfully fabricated using SFF technology. BMP-2 was previously protected by poly(ethylene glycol) (PEG), and the BMP-2/PEG complex was incorporated in HA-PLGA using an organic solvent. The HAPLGA/PEG/BMP-2 mixture was dissolved in chloroform and deposited via a multi-head deposition system (MHDS), one type of SFF technology, to fabricate a scaffold for tissue engineering. An additional air blower system and suction were installed in the MHDS for the solvent-based fabrication method. An in vitro evaluation of BMP-2 release was conducted, and prolonged release of intact BMP-2, for up to 28 days, was confirmed. After confirmation of advanced proliferation of pre osteoblasts, a superior differentiation effect of the HA-PLGA/PEG/BMP-2 scaffold was validated by measuring high expression levels of bone-specific markers, such as alkaline phosphatase (ALP) and osteocalcin (OC). We show that our solvent-based fabrication is a non-toxic method for restoring cellular activity. Moreover, the HAPLGA/PEG/BMP-2 scaffold was effective for bone regeneration.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Gianpaolo Savio ◽  
Stefano Rosso ◽  
Roberto Meneghello ◽  
Gianmaria Concheri

Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed.


2003 ◽  
Vol 9 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Suman Das ◽  
Scott J. Hollister ◽  
Colleen Flanagan ◽  
Adebisi Adewunmi ◽  
Karlin Bark ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document