Genes in Differentiation, Survival, and Degeneration of Midbrain Dopaminergic Neurons

Author(s):  
Jin Son
2015 ◽  
Vol 35 (31) ◽  
pp. 11144-11152 ◽  
Author(s):  
E. Piccart ◽  
N. A. Courtney ◽  
S. Y. Branch ◽  
C. P. Ford ◽  
M. J. Beckstead

2021 ◽  
Vol 118 (40) ◽  
pp. e2111069118
Author(s):  
Theodoros Tsetsenis ◽  
Julia K. Badyna ◽  
Julianne A. Wilson ◽  
Xiaowen Zhang ◽  
Elizabeth N. Krizman ◽  
...  

Aversive memories are important for survival, and dopaminergic signaling in the hippocampus has been implicated in aversive learning. However, the source and mode of action of hippocampal dopamine remain controversial. Here, we utilize anterograde and retrograde viral tracing methods to label midbrain dopaminergic projections to the dorsal hippocampus. We identify a population of midbrain dopaminergic neurons near the border of the substantia nigra pars compacta and the lateral ventral tegmental area that sends direct projections to the dorsal hippocampus. Using optogenetic manipulations and mutant mice to control dopamine transmission in the hippocampus, we show that midbrain dopamine potently modulates aversive memory formation during encoding of contextual fear. Moreover, we demonstrate that dopaminergic transmission in the dorsal CA1 is required for the acquisition of contextual fear memories, and that this acquisition is sustained in the absence of catecholamine release from noradrenergic terminals. Our findings identify a cluster of midbrain dopamine neurons that innervate the hippocampus and show that the midbrain dopamine neuromodulation in the dorsal hippocampus is sufficient to maintain aversive memory formation.


1998 ◽  
Vol 18 (13) ◽  
pp. 4929-4937 ◽  
Author(s):  
Brian A. Horger ◽  
Merry C. Nishimura ◽  
Mark P. Armanini ◽  
Li-Chong Wang ◽  
Kris T. Poulsen ◽  
...  

2009 ◽  
Vol 4 (1) ◽  
pp. 11 ◽  
Author(s):  
Kambiz N Alavian ◽  
Paola Sgadò ◽  
Lavinia Alberi ◽  
Srinivasa Subramaniam ◽  
Horst H Simon

2020 ◽  
Vol 21 (18) ◽  
pp. 6589
Author(s):  
Giulia Gaggi ◽  
Andrea Di Credico ◽  
Pascal Izzicupo ◽  
Francesco Alviano ◽  
Michele Di Mauro ◽  
...  

Degeneration of dopaminergic neurons represents the cause of many neurodegenerative diseases, with increasing incidence worldwide. The replacement of dead cells with new healthy ones may represent an appealing therapeutic approach to these pathologies, but currently, only pluripotent stem cells can generate dopaminergic neurons with high efficiency. However, with the use of these cells arises safety and/or ethical issues. Human mesenchymal stromal cells (hFM-MSCs) are perinatal stem cells that can be easily isolated from the amniochorionic membrane after delivery. Generally considered multipotent, their real differentiative potential is not completely elucidated. The aim of this study was to analyze their stemness characteristics and to evaluate whether they may overcome their mesenchymal fate, generating dopaminergic neurons. We demonstrated that hFM-MSCs expressed embryonal genes OCT4, NANOG, SOX2, KLF4, OVOL1, and ESG1, suggesting they have some features of pluripotency. Moreover, hFM-MSCs that underwent a dopaminergic differentiation protocol gradually increased the transcription of dopaminergic markers LMX1b, NURR1, PITX3, and DAT. We finally obtained a homogeneous population of cells resembling the morphology of primary midbrain dopaminergic neurons that expressed the functional dopaminergic markers TH, DAT, and Nurr1. In conclusion, our results suggested that hFM-MSCs retain the expression of pluripotency genes and are able to differentiate not only into mesodermal cells, but also into neuroectodermal dopaminergic neuron-like cells.


Sign in / Sign up

Export Citation Format

Share Document