Using Systems Biology Techniques to Determine Metabolic Fluxes and Metabolite Pool Sizes

Author(s):  
Fangping Mu ◽  
Amy Bauer ◽  
James Faeder ◽  
William Hlavacek
2019 ◽  
Vol 12 ◽  
pp. 251686571986968
Author(s):  
Sriram Chandrasekaran

Histone modifications represent an innate cellular mechanism to link nutritional status to gene expression. Metabolites such as acetyl-CoA and S-adenosyl methionine influence gene expression by serving as substrates for modification of histones. Yet, we lack a predictive model for determining histone modification levels based on cellular metabolic state. The numerous metabolic pathways that intersect with histone marks makes it highly challenging to understand their interdependencies. Here, we highlight new systems biology tools to unravel the impact of nutritional cues and metabolic fluxes on histone modifications.


2019 ◽  
Vol 70 (16) ◽  
pp. 4155-4170 ◽  
Author(s):  
Mutsumi Watanabe ◽  
Rainer Hoefgen

Abstract Systems biology approaches have been applied over the last two decades to study plant sulphur metabolism. These ‘sulphur-omics’ approaches have been developed in parallel with the advancing field of systems biology, which is characterized by permanent improvements of high-throughput methods to obtain system-wide data. The aim is to obtain a holistic view of sulphur metabolism and to generate models that allow predictions of metabolic and physiological responses. Besides known sulphur-responsive genes derived from previous studies, numerous genes have been identified in transcriptomics studies. This has not only increased our knowledge of sulphur metabolism but has also revealed links between metabolic processes, thus indicating a previously unexpected complex interconnectivity. The identification of response and control networks has been supported through metabolomics and proteomics studies. Due to the complex interlacing nature of biological processes, experimental validation using targeted or systems approaches is ongoing. There is still room for improvement in integrating the findings from studies of metabolomes, proteomes, and metabolic fluxes into a single unifying concept and to generate consistent models. We therefore suggest a joint effort of the sulphur research community to standardize data acquisition. Furthermore, focusing on a few different model plant systems would help overcome the problem of fragmented data, and would allow us to provide a standard data set against which future experiments can be designed and compared.


1982 ◽  
Vol 208 (3) ◽  
pp. 577-581 ◽  
Author(s):  
K J Peuhkurinen ◽  
E M Nuutinen ◽  
E P Pietiläinen ◽  
J K Hiltunen ◽  
I E Hassinen

The increase in the metabolite pool size of the tricarboxylic acid cycle in the isolated perfused rat heart after a decrease in the ATP consumption by KCl-induced arrest was used to study the anaplerotic mechanisms. During net anaplerosis the label incorporation into the tricarboxylic acid-cycle intermediates from [1-14C]pyruvate increased and occurred mainly by pathways not involving prior release of the label to CO2. A method for determination of the specific radioactivity of mitochondrial pyruvate was devised, and the results corroborated the notion that tissue alanine can be used as an indicator of the specific radioactivity of intracellular pyruvate.


2019 ◽  
Vol 42 ◽  
Author(s):  
J. Alfredo Blakeley-Ruiz ◽  
Carlee S. McClintock ◽  
Ralph Lydic ◽  
Helen A. Baghdoyan ◽  
James J. Choo ◽  
...  

Abstract The Hooks et al. review of microbiota-gut-brain (MGB) literature provides a constructive criticism of the general approaches encompassing MGB research. This commentary extends their review by: (a) highlighting capabilities of advanced systems-biology “-omics” techniques for microbiome research and (b) recommending that combining these high-resolution techniques with intervention-based experimental design may be the path forward for future MGB research.


Author(s):  
Bernhard O. Palsson ◽  
Marc Abrams
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document