Extracellular matrix molecules in vascular tissue engineering

Author(s):  
M Sherratt ◽  
N Hodson ◽  
D Bax ◽  
C Kielty
2019 ◽  
Vol 7 (16) ◽  
pp. 2703-2713 ◽  
Author(s):  
Na Li ◽  
Alex P. Rickel ◽  
Hanna J. Sanyour ◽  
Zhongkui Hong

Stem cell differentiation on a decellularized native blood vessel scaffold under mechanical stimulation for vascular tissue engineering.


2016 ◽  
Vol 5 (13) ◽  
pp. 1594-1605 ◽  
Author(s):  
Bin Jiang ◽  
Rachel Suen ◽  
Jiao-Jing Wang ◽  
Zheng J. Zhang ◽  
Jason A. Wertheim ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Alessandro F. Pellegata ◽  
M. Adelaide Asnaghi ◽  
Ilaria Stefani ◽  
Anna Maestroni ◽  
Silvia Maestroni ◽  
...  

Small caliber vessels substitutes still remain an unmet clinical need; few autologous substitutes are available, while synthetic grafts show insufficient patency in the long term. Decellularization is the complete removal of all cellular and nuclear matters from a tissue while leaving a preserved extracellular matrix representing a promising tool for the generation of acellular scaffolds for tissue engineering, already used for various tissues with positive outcomes. The aim of this work is to investigate the effect of a detergent-enzymatic decellularization protocol on swine arteries in terms of cell removal, extracellular matrix preservation, and mechanical properties. Furthermore, the effect of storage at −80°C on the mechanical properties of the tissue is evaluated. Swine arteries were harvested, frozen, and decellularized; histological analysis revealed complete cell removal and preserved extracellular matrix. Furthermore, the residual DNA content in decellularized tissues was far low compared to native one. Mechanical testings were performed on native, defrozen, and decellularized tissues; no statistically significant differences were reported for Young’s modulus, ultimate stress, compliance, burst pressure, and suture retention strength, while ultimate strain and stress relaxation of decellularized vessels were significantly different from the native ones. Considering the overall results, the process was confirmed to be suitable for the generation of acellular scaffolds for vascular tissue engineering.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Peiwei Wang ◽  
Junli Liu ◽  
Teng Zhang

Chitosan/collagen composite nanofibrous scaffold has been greatly concerned in recent years for its favorable physicochemical properties which mimic the native extracellular matrix (ECM) both morphologically and chemically. In a previous study, we had successfully fabricated nanofibrous chitosan/collagen composite by electrospinning. In the present study, we further investigate the biocompatibility of such chitosan/collagen composite nanofiber to be used as scaffolds in vascular tissue engineering. The porcine iliac artery endothelial cells (PIECs) were employed for morphogenesis, attachment, proliferation, and phenotypic studies. Four characteristic EC markers, including two types of cell adhesion molecules, one proliferation molecule (PCNA), and one function molecule (p53), were studied by semiquantitative RT-PCR. Results showed that the chitosan/collagen composite nanofibrous scaffold could enhance the attachment, spreading, and proliferation of PIECs and preserve the EC phenotype. Our work provides profound proofs for the applicable potency of scaffolds made from chitosan/collagen composite nanofiber to be used in vascular tissue engineering.


2020 ◽  
Vol 21 (11) ◽  
pp. 3905 ◽  
Author(s):  
Christian G.M. van Dijk ◽  
Laura Louzao-Martinez ◽  
Elise van Mulligen ◽  
Bart Boermans ◽  
Jeroen A.A. Demmers ◽  
...  

In vascular tissue engineering strategies, the addition of vascular-specific extracellular matrix (ECM) components may better mimic the in vivo microenvironment and potentially enhance cell–matrix interactions and subsequent tissue growth. For this purpose, the exact composition of the human vascular ECM first needs to be fully characterized. Most research has focused on characterizing ECM components in mature vascular tissue; however, the developing fetal ECM matches the active environment required in vascular tissue engineering more closely. Consequently, we characterized the ECM protein composition of active (fetal) and quiescent (mature) renal arteries using a proteome analysis of decellularized tissue. The obtained human fetal renal artery ECM proteome dataset contains higher levels of 15 ECM proteins versus the mature renal artery ECM proteome, whereas 16 ECM proteins showed higher levels in the mature tissue compared to fetal. Elastic ECM proteins EMILIN1 and FBN1 are significantly enriched in fetal renal arteries and are mainly produced by cells of mesenchymal origin. We functionally tested the role of EMILIN1 and FBN1 by anchoring the ECM secreted by vascular smooth muscle cells (SMCs) to glass coverslips. This ECM layer was depleted from either EMILIN1 or FBN1 by using siRNA targeting of the SMCs. Cultured endothelial cells (ECs) on this modified ECM layer showed alterations on the transcriptome level of multiple pathways, especially the Rho GTPase controlled pathways. However, no significant alterations in adhesion, migration or proliferation were observed when ECs were cultured on EMILIN1- or FNB1-deficient ECM. To conclude, the proteome analysis identified unique ECM proteins involved in the embryonic development of renal arteries. Alterations in transcriptome levels of ECs cultured on EMILIN1- or FBN1-deficient ECM showed that these candidate proteins could affect the endothelial (regenerative) response.


Sign in / Sign up

Export Citation Format

Share Document