Performance of Reactive Powder Concrete (RPC) with different curing conditions and its retrofitting effects on concrete member

Author(s):  
B Chen ◽  
T Chang ◽  
C Wu ◽  
J Wang
2014 ◽  
Vol 548-549 ◽  
pp. 247-253
Author(s):  
Zhi Gang Zhu ◽  
Bei Xing Li ◽  
Jin Cheng Liu ◽  
Xing Dong Lv

To produce 130MPa reactive powder concrete with iron tailing sands as aggregation in an economic hot curing system, the effects of curing temperature, curing time and curing conditions on the reactive powder concrete was studied, the reasons of the strength of reactive powder concrete in different curing systems has the difference from the submicroscopic structure point of view was analyzed. The results show that use 90°C hot water to cure reactive powder concrete for 48h can lead it’s 28 day compressive strength reaches 140MPa, the flexural strength reaches 28MPa.


2018 ◽  
Vol 162 ◽  
pp. 02014
Author(s):  
Mazin Abdulrahman ◽  
Alyaa Al-Attar ◽  
Marwa Ahmad

Reactive Powder Concrete (RPC) is an ultra-high performance concrete which has superior mechanical and physical properties, and composed of cement and very fine powders such as quartz sand and silica fume with very low water/ binder ratio and Superplasticizer. Heat treatment is a well-known method that can further improve the performance of (RPC). The current research including an experimental study of the effect of different curing conditions on mechanical properties of reactive powder concrete (compressive strength, modulus of rupture and splitting tensile strength), the curing conditions includes three type of curing; immersion in water at temperature of 35 OC (which is considered as the reference-curing situation), immersion in water at temperature of 90 OC for 5 hours daily and curing with hot steam for 5 hours daily) until 28 days according to ASTM C684-99 [8]. This research includes also the study of effect of adding silica fume as percentage of cement weight on mechanical properties of reactive powder concrete for different percentage ratios (5%,10% and 15%). Super plasticizer is also used with ratio of (1.8%) by weight of cementitious material; constant water cement ratio (0.24) was used for all mixes. For each reactive concrete mix, it has been cast into a cubes of (150*150*150) (to conduct the compression test), a cylinders of 150mm diameter with 300mm height (to conduct split test) and prisms of (500*100*100)mm to conduct the modulus of rupture test. The results showed that the best method of curing (according to its enhancing the RPC mechanical properties) is the method of immersion in hot water at temperature 90 OC for the all silica fume percentages, and the best used silica fume percentage was (10%) for the all used curing methods.


2013 ◽  
Vol 25 (4) ◽  
pp. 457-465
Author(s):  
Khulgadai Janchivdorj ◽  
Seung-Hoon Choi ◽  
Hyoung-Seok So ◽  
Ki-Seog Seo ◽  
Seung-Young So

2021 ◽  
Vol 2 (1) ◽  
pp. 7-12
Author(s):  
Mounira Chadli

Reactive Powder Concrete (RPC) currently represents the family of cementitious matrix materials with properties the most exceptional mechanics and durability. This study aims to investigate the physico-mechanical properties, and the durability in a sulphated environment of a reactive powder concrete using materials available in our region, we have integrated materials rich in silica (slag, silica fume and crushed quartz) in Portland cement with 15, 23 and 25%, respectively. After The remove of the specimens from the mold and place the RPC in the curing box under steam curing conditions of 90 ° C for 72h, let them cool naturally for 24 h, the test pieces are immersed in water at 20 ° C, the specimens are broken in flexion and compression. From this study we can make the following conclusions: The incorporation of additions increases the compressive and flexural tensile strengths, which gives an improvement in the compactness of the mixtures by the pozzolanic effect of these last, by removing the particle size phase in the RPC and the affluence of dune sand (southern Algeria) and slag (industrial waste from the iron ore blast furnace), because Na2SO4 has a major effect on the compressive strength notably for non-fibrous formulations. NaOH improve the compressive strength for all formulation.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3615 ◽  
Author(s):  
Yunlong Zhang ◽  
Bin Wu ◽  
Jing Wang ◽  
Mo Liu ◽  
Xu Zhang

In this paper, a practical reactive powder concrete mixture ratio is created on the basis of an orthogonal experiment. Previous studies have combined the compressive and splitting tensile strengths of four categories of reactive powder concrete (RPC) for major materials. These categories include water/binder ratio, silica fume volume content, sand/binder ratio, and dosage of fly ash volume. The optimal mixing proportion of each factor was determined by analyzing the compressive strength of the RPC matrix. For this purpose, steel fiber was used as a reinforcing agent. The compressive and splitting tensile strength test results of steel fiber RPC were analyzed by comparing compound, standard, and natural curing. This was conducted to explore the improvement effect of different steel fiber contents on compressive performance, especially tensile strength of the RPC matrix. According to the results, the optimal steel fiber content was found to be 4% under the three curing conditions. The effect of compound curing on early strength was found to be greater in RPC than by natural or standard curing. However, the effect of late improvement is not obvious. Although standard curing is slightly stronger than natural curing, the performance under the latter can still meet engineering requirements.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3748
Author(s):  
Hammad Salahuddin ◽  
Liaqat Ali Qureshi ◽  
Adnan Nawaz ◽  
Muhammad Abid ◽  
Rayed Alyousef ◽  
...  

This study examines the effect of elevated temperature on various properties of reactive powder concrete (RPC) containing varying percentages of recycled fine aggregates as sand replacement. Recycled fine aggregates were collected from two sources, i.e., demolished normal strength concrete and demolished RPC. The specimens were prepared using 25%, 50%, and 75% replacement of natural sand with recycled fine aggregates, exposed to two different curing conditions and were subjected to four temperatures, i.e., 25, 200, 400, and 600 °C. Later, the specimens were tested for mass loss, compressive strength test, split-tensile strength test, flexural strength test, and water absorption test at all temperature ranges. Results determined that although the mechanical properties degraded with the temperature rise, the recycled aggregates can be employed as a partial replacement of natural sand in RPC without causing a significant decrease in the performance of RPC, and can help to produce more sustainable RPC by using recycled aggregates.


Sign in / Sign up

Export Citation Format

Share Document