THE INFLUENCE OF STEEL FIBRE CONTENT AND CURING CONDITIONS ON MECHANICAL PROPERTIES AND DEFORMABILITY OF REACTIVE POWDER CONCRETE AT BENDING

2009 ◽  
pp. 33-42 ◽  
Author(s):  
Tomasz ZDEB ◽  
Jacek ŚLIWIŃSKI
2018 ◽  
Vol 162 ◽  
pp. 02014
Author(s):  
Mazin Abdulrahman ◽  
Alyaa Al-Attar ◽  
Marwa Ahmad

Reactive Powder Concrete (RPC) is an ultra-high performance concrete which has superior mechanical and physical properties, and composed of cement and very fine powders such as quartz sand and silica fume with very low water/ binder ratio and Superplasticizer. Heat treatment is a well-known method that can further improve the performance of (RPC). The current research including an experimental study of the effect of different curing conditions on mechanical properties of reactive powder concrete (compressive strength, modulus of rupture and splitting tensile strength), the curing conditions includes three type of curing; immersion in water at temperature of 35 OC (which is considered as the reference-curing situation), immersion in water at temperature of 90 OC for 5 hours daily and curing with hot steam for 5 hours daily) until 28 days according to ASTM C684-99 [8]. This research includes also the study of effect of adding silica fume as percentage of cement weight on mechanical properties of reactive powder concrete for different percentage ratios (5%,10% and 15%). Super plasticizer is also used with ratio of (1.8%) by weight of cementitious material; constant water cement ratio (0.24) was used for all mixes. For each reactive concrete mix, it has been cast into a cubes of (150*150*150) (to conduct the compression test), a cylinders of 150mm diameter with 300mm height (to conduct split test) and prisms of (500*100*100)mm to conduct the modulus of rupture test. The results showed that the best method of curing (according to its enhancing the RPC mechanical properties) is the method of immersion in hot water at temperature 90 OC for the all silica fume percentages, and the best used silica fume percentage was (10%) for the all used curing methods.


2012 ◽  
Vol 568 ◽  
pp. 39-42
Author(s):  
Yu Zhuo Jia ◽  
Li Lin

SAP2000 structural analysis software is used to designed two of 500kV partially prestressed reactive powder concrete pole cross arm; moreover, poles of the two cross arm program have been compared. The results show that the triangular truss cross arm has good mechanical properties, improving the main mate’rial of the stress state, the pole reduced height 10m, by the analysis of the structure shows, this cross arm has higher reliability under the operating conditions, which can be used in 500kV transmission line; from economic and technical performance, the pole cost of this program is greatly reduced, while speeding up the construction progress and improving the comprehensive benefits of the poles in the transmission line.


2013 ◽  
Vol 671-674 ◽  
pp. 1761-1765
Author(s):  
Yong Liu ◽  
Chun Ming Song ◽  
Song Lin Yue

In order to get mechanical properties ,some RPC samples with 5% steel fiber are tested, many groups data were obtained such as compressive strength, shear strength and fracture toughness. And a group of tests on RPC with 5% steel-fiber under penetration were also conducted to validate the performance to impact. The penetration tests are carried out by the semi-AP projectiles with the diameter of 57 mm and earth penetrators with the diameter of 80 mm, and velocities of the two kinds of projectiles are 300~600 m/s and 800~900 m/s, respectively. By contrast between the experimental data and the calculation results of C30 reinforced concrete by using experiential formula under penetration, it shows that the resistance of steel-fiber RPC to penetration is 3 times as that of general C30 reinforced concrete.


2014 ◽  
Vol 904 ◽  
pp. 3-6 ◽  
Author(s):  
Zhi Gang Yin

The different influencing regular of fly-ash fractiontype of fibre (steel fibre and polypropylene fibre) and fibre fraction on the mechanical property and fracture behavior of Reactive Powder Concrete (PRC) are studied. Fracture mechanical properties of RPC is researched in double-K fracture model and fracture energy release rate G . Test results show that the crack propagation of RPC with steel fibers is limited. Its fracture toughness and pre-critical crack length is largely enhanced. Double-K fracture model and fracture energy release rate G are consistent with describing the fracture behavior of RPC.


Sign in / Sign up

Export Citation Format

Share Document