Three-dimensional analyses of transition zones at railway bridges

Author(s):  
M Smith
Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 774
Author(s):  
Max Langer ◽  
Thomas Speck ◽  
Olga Speck

Although both the petiole and lamina of foliage leaves have been thoroughly studied, the transition zone between them has often been overlooked. We aimed to identify objectively measurable morphological and anatomical criteria for a generally valid definition of the petiole–lamina transition zone by comparing foliage leaves with various body plans (monocotyledons vs. dicotyledons) and spatial arrangements of petiole and lamina (two-dimensional vs. three-dimensional configurations). Cross-sectional geometry and tissue arrangement of petioles and transition zones were investigated via serial thin-sections and µCT. The changes in the cross-sectional geometries from the petiole to the transition zone and the course of the vascular bundles in the transition zone apparently depend on the spatial arrangement, while the arrangement of the vascular bundles in the petioles depends on the body plan. We found an exponential acropetal increase in the cross-sectional area and axial and polar second moments of area to be the defining characteristic of all transition zones studied, regardless of body plan or spatial arrangement. In conclusion, a variety of terms is used in the literature for describing the region between petiole and lamina. We prefer the term “petiole–lamina transition zone” to underline its three-dimensional nature and the integration of multiple gradients of geometry, shape, and size.


2014 ◽  
Vol 687-691 ◽  
pp. 3-6
Author(s):  
Da Ming Wang ◽  
Ming Zhe Li ◽  
Zhong Yi Cai

3D rolling is a novel technology for three-dimensional surface parts. In this process, by controlling the gap between the upper and lower forming rolls, the sheet metal is non-uniformly thinned in thickness direction, and the longitudinal elongation of the sheet metal is different along the transverse direction, which makes the sheet metal generate three-dimensional deformation. In this paper, the transition zones of spherical surface parts in 3D rolling process are investigated. Spherical surface parts with the same widths but different lengths are simulated in condition of the same roll gap, and their experimental results are presented. The forming precision of forming parts and the causes of transition zones in the head and tail regions are analyzed through simulated results. The simulated and experimental results show that the lengths of transition zones of spherical surfaces in the head and tail regions are fixed values in condition of the same sheet width and roll gap.


2018 ◽  
Vol 164 ◽  
pp. 169-182 ◽  
Author(s):  
André Paixão ◽  
José Nuno Varandas ◽  
Eduardo Fortunato ◽  
Rui Calçada

Author(s):  
Ahmed Rageh ◽  
Daniel Linzell ◽  
Samantha Lopez ◽  
Saeed Eftekhar Azam

This chapter extends application of a framework proposed by the authors (73, 74) for automated damage detection using strain measurements to study feasibility of using sensors that can measure accelerations, tilts, and displacements. The study utilized three-dimensional (3D) finite element models of double track, riveted, steel truss span, and girder bridge span under routine train loads. The chapter also includes three instrumentation schemes for each bridge span (65) to investigate the applicability of the framework to other bridge systems and sensor networks. Connection damage was simulated by reducing rotational spring stiffness at member ends and various responses were extracted for each damage scenario. The methodology utilizes Supervised Machine Learning to automatically determine damage location (DL) and intensity (DI). Simulated experiments showed that DLs and DIs were detected accurately for both spans with various structural responses and using different instrumentation plans.


2020 ◽  
Vol 13 (3) ◽  
pp. 955-976
Author(s):  
Ludovic Räss ◽  
Aleksandar Licul ◽  
Frédéric Herman ◽  
Yury Y. Podladchikov ◽  
Jenny Suckale

Abstract. Ice sheets lose the majority of their mass through outlet glaciers or ice streams, corridors of fast ice moving multiple orders of magnitude more rapidly than the surrounding ice. The future stability of these corridors of fast-moving ice depends sensitively on the behaviour of their boundaries, namely shear margins, grounding zones and the basal sliding interface, where the stress field is complex and fundamentally three-dimensional. These boundaries are prone to thermomechanical localisation, which can be captured numerically only with high temporal and spatial resolution. Thus, better understanding the coupled physical processes that govern the response of these boundaries to climate change necessitates a non-linear, full Stokes model that affords high resolution and scales well in three dimensions. This paper's goal is to contribute to the growing toolbox for modelling thermomechanical deformation in ice by leveraging graphical processing unit (GPU) accelerators' parallel scalability. We propose FastICE, a numerical model that relies on pseudo-transient iterations to solve the implicit thermomechanical coupling between ice motion and temperature involving shear heating and a temperature-dependent ice viscosity. FastICE is based on the finite-difference discretisation, and we implement the pseudo-time integration in a matrix-free way. We benchmark the mechanical Stokes solver against the finite-element code Elmer/Ice and report good agreement among the results. We showcase a parallel version of FastICE to run on GPU-accelerated distributed memory machines, reaching a parallel efficiency of 99 %. We show that our model is particularly useful for improving our process-based understanding of flow localisation in the complex transition zones bounding rapidly moving ice.


2021 ◽  
Vol 7 ◽  
Author(s):  
André Paixão ◽  
José Nuno Varandas ◽  
Eduardo Fortunato

Transition zones between embankments and bridges or tunnels are examples of critical assets of the railway infrastructure. These locations often exhibit higher degradations rates, mostly due to the development of differential settlements, which amplify the dynamic train-track interaction, thus further accelerating the development of settlements and deteriorating track components and vehicles. Despite the technical and scientific interest in predicting the long-term behavior of transition zones, few studies have been able to develop a robust approach that could accurately simulate this complex structural response. To address this topic, this work presents a three-dimensional finite element (3D FEM) approach to simulate the long-term behavior of railway tracks at transition zones. The approach considers both plastic deformation of the ballast layer using a high-cycle strain accumulation model and the non-linearity of the dynamic vehicle-track interaction that results from the evolution of the deformed states of the track itself. The results shed some light into the behavior of transition zones and evidence the complex long-term response of this structures and its interdependency with the transient response of the train-track interaction. Aspects that are critical when assessing the performance of these systems are analyzed in detail, which might be of relevance for researchers and practitioners in the design, construction, and maintenance processes.


2020 ◽  
Vol 197 ◽  
pp. 07001
Author(s):  
Gianluca Marinaro ◽  
Emma Frosina ◽  
Adolfo Senatore ◽  
Kim A. Stelson ◽  
Yuhao Feng

A numerical three-dimensional CFD analysis of a variable displacement vane pump has been conducted, investigating the effects on the pressure ripple caused by the vane detaching from the pressure ring. The volume of the fluid over the vane tip has been re-meshed at every time step as a function of the forces acting on the bottom and the top of each vane. The numerical model has been developed using the commercial tool, Simerics MP+, including turbulence and cavitation models. The validation of the model has been done comparing numerical and experimental data. It has been observed that the detachment of the vane occurs during the transition zones when unwanted pressure spikes are generated by a nonoptimized valve plate design. The prediction of vane detachment is crucial for designing a quieter and more durable pump. Vane collision on the stator ring can be a source of noise producing premature wear of both components. Vane detachment from the stator ring has a large effect on pressure ripple even if the volumetric efficiency is only slightly influenced.


Sign in / Sign up

Export Citation Format

Share Document