Low carbon ontology development using information retrieval techniques

Author(s):  
H Li ◽  
Y Rezgui ◽  
J Miles ◽  
I Wilson
Author(s):  
Zhanjun Li ◽  
Maria C. Yang ◽  
Karthik Ramani

AbstractWhen engineering content is created and applied during the product life cycle, it is often stored and forgotten. Current information retrieval approaches based on statistical methods and keyword matching are not effective in understanding the context of engineering content. They are not designed to be directly applicable to the engineering domain. Therefore, engineers have very limited means to harness and reuse past designs. The overall objective of our research is to develop an engineering ontology (EO)-based computational framework to structure unstructured engineering documents and achieve more effective information retrieval. This paper focuses on the method and process to acquire and validate the EO. The main contributions include a new, systematic, and more structured ontology development method assisted by a semiautomatic acquisition tool. This tool is integrated with Protégé ontology editing environment; an engineering lexicon (EL) that represents the associated lexical knowledge of the EO to bridge the gap between the concept space of the ontology and the word space of engineering documents and queries; the first large-scale EO and EL acquired from established knowledge resources for engineering information retrieval; and a comprehensive validation strategy and its implementations to justify the quality of the acquired EO. A search system based on the EO and EL has been developed and tested. The retrieval performance test further justifies the effectiveness of the EO and EL as well as the ontology development method.


Author(s):  
Ta Cong Duy Chien ◽  
Phan Thi Tuoi ◽  
Nguyen Chanh Thanh

Recently,  ontology-based  application  is  an important approach of some researches in several fields of Computer Science.  The  development  of  Subject-Oriented Ontology  (SOO)  may  be  hard  for  research  groups. However, since SOO can apply to various areas especially for  subject-driven  researches,  research  groups  are continuing  to  search  for  solutions  for  building  it.  The paper proposes an approach to develop an SOO based on corpus  of  scientific  papers  by  building  subject  trees  and semantic  relationships  among  them.   Our  experiments were  tested  on  the  ACM  corpus  and  we  have  acchieved good results in the first phase


2011 ◽  
Vol 403-408 ◽  
pp. 1883-1887
Author(s):  
Hong Jun Cao ◽  
Pei Zhang ◽  
Zhi Qiang Zhou

In order to improve the search speed and accuracy of recruitment information in online recruitment of "low carbon recruitment”, this paper designed the online recruitment information retrieval system. The recruitment information retrieval system developed by J2EE platform and RIA technology. And it used for the retrieval of recruitment information and the personal circumstances of applicants for companies. Firstly, this paper described the purpose of developing this system and some related retrieval technology. Secondly, it introduced the overall design and detailed design. Finally, it provided applicants with a friendly user interface so that applicants can quickly apply for jobs and thus achieved the purpose of energy conservation and emission reduction.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bianca Steiner ◽  
Birgit Saalfeld ◽  
Lena Elgert ◽  
Reinhold Haux ◽  
Klaus-Hendrik Wolf

Abstract Background Adherence and motivation are key factors for successful treatment of patients with chronic diseases, especially in long-term care processes like rehabilitation. However, only a few patients achieve good treatment adherence. The causes are manifold. Adherence-influencing factors vary depending on indications, therapies, and individuals. Positive and negative effects are rarely confirmed or even contradictory. An ontology seems to be convenient to represent existing knowledge in this domain and to make it available for information retrieval. Methods First, a manual data extraction of current knowledge in the domain of treatment adherence in rehabilitation was conducted. Data was retrieved from various sources, including basic literature, scientific publications, and health behavior models. Second, all adherence and motivation factors identified were formalized according to the ontology development methodology METHONTOLOGY. This comprises the specification, conceptualization, formalization, and implementation of the ontology “Ontology for factors influencing therapy adherence to rehabilitation” (OnTARi) in Protégé. A taxonomy-oriented evaluation was conducted by two domain experts. Results OnTARi includes 281 classes implemented in ontology web language, ten object properties, 22 data properties, 1440 logical axioms, 244 individuals, and 1023 annotations. Six higher-level classes are differentiated: (1) Adherence, (2) AdherenceFactors, (3) AdherenceFactorCategory, (4) Rehabilitation, (5) RehabilitationForm, and (6) RehabilitationType. By means of the class AdherenceFactors 227 adherence factors, thereof 49 hard factors, are represented. Each factor involves a proper description, synonyms, possibly existing acronyms, and a German translation. OnTARi illustrates links between adherence factors through 160 influences-relations. Description logic queries implemented in Protégé allow multiple targeted requests, e.g., for the extraction of adherence factors in a specific rehabilitation area. Conclusions With OnTARi, a generic reference model was built to represent potential adherence and motivation factors and their interrelations in rehabilitation of patients with chronic diseases. In terms of information retrieval, this formalization can serve as a basis for implementation and adaptation of conventional rehabilitative measures, taking into account (patient-specific) adherence factors. OnTARi also enables the development of medical assistance systems to increase motivation and adherence in rehabilitation processes.


Author(s):  
Richard E. Hartman ◽  
Roberta S. Hartman ◽  
Peter L. Ramos

We have long felt that some form of electronic information retrieval would be more desirable than conventional photographic methods in a high vacuum electron microscope for various reasons. The most obvious of these is the fact that with electronic data retrieval the major source of gas load is removed from the instrument. An equally important reason is that if any subsequent analysis of the data is to be made, a continuous record on magnetic tape gives a much larger quantity of data and gives it in a form far more satisfactory for subsequent processing.


Author(s):  
G. M. Greene ◽  
J. W. Sprys

The present study demonstrates that fracture surfaces appear strikingly different when observed in the transmission electron microscope by replication and in the scanning electron microscope by backscattering and secondary emission. It is important to know what form these differences take because of the limitations of each instrument. Replication is useful for study of surfaces too large for insertion into the S.E.M. and for resolution of fine detail at high magnification with the T.E.M. Scanning microscopy reduces sample preparation time and allows large sections of the actual surface to be viewed.In the present investigation various modes of the S.E.M. along with the transmission mode in the T.E.M. were used to study one area of a fatigue surface of a low carbon steel. Following transmission study of a platinum carbon replica in the T.E.M. and S.E.M. the replica was coated with a gold layer approximately 200A° in thickness to improve electron emission.


Author(s):  
J. Y. Koo ◽  
G. Thomas

High resolution electron microscopy has been shown to give new information on defects(1) and phase transformations in solids (2,3). In a continuing program of lattice fringe imaging of alloys, we have applied this technique to the martensitic transformation in steels in order to characterize the atomic environments near twin, lath and αmartensite boundaries. This paper describes current progress in this program.Figures A and B show lattice image and conventional bright field image of the same area of a duplex Fe/2Si/0.1C steel described elsewhere(4). The microstructure consists of internally twinned martensite (M) embedded in a ferrite matrix (F). Use of the 2-beam tilted illumination technique incorporating a twin reflection produced {110} fringes across the microtwins.


Sign in / Sign up

Export Citation Format

Share Document