Stress-strain behavior of remoulded cement-treated Singapore marine clay

2010 ◽  
pp. 177-182 ◽  
Author(s):  
Huawen Xiao ◽  
Fook Lee
2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Nan Zhou ◽  
Shenyang Ouyang ◽  
Qiangqiang Cheng ◽  
Feng Ju

Backfilling mining method is an overlying strata control way, which is widely used in underground coal mine. This method is effective in preventing and controlling geological disasters such as surface subsidence, mine water inrush, rock burst, and other disasters. Cement-treated marine clay (CMC) is a typical porous media, which has abundant reserves and can be used as a new backfilling material. Therefore, the mechanical characteristics of CMC are very important for overlying strata control in coal mine. To investigate stress-strain behavior of CMC, isotropic consolidated drained (CID) triaxial test and isotropic compression test (ICT) were conducted with different confining pressures in the range of 50–800 kPa. Stress-strain behavior was found similar to those of the overconsolidated stress-strain behavior as well as the pore water pressure versus strain. Stress versus strain curves under lower confining pressure 50–250 kPa presented shear dilatancy. The result shows that the peak strength increased linearly with increasing confining pressure. The internal friction angle and cohesion are 48° and 590 kPa, respectively. Before the confining pressure reaches 727 kPa, which is the primary yielding point, the secant modulus E1 (the secant modulus at 1% axial strain) and the secant modulus E50 (corresponding to the 50% of the peak point) increase initially and decrease afterwards with the increasing of confining pressure. Afterwards, the two parameters increased with increasing confining pressure. The yielding stress occurred in the stage, generating a dramatic decrease in tangent modulus. This study can be a theoretical basis for engineering application of this new backfilling material.


2012 ◽  
Vol 1 (3) ◽  
pp. 32-38
Author(s):  
Tantary M.A ◽  
◽  
Upadhyay A ◽  
Prasad J ◽  
◽  
...  

1985 ◽  
Vol 58 (4) ◽  
pp. 830-856 ◽  
Author(s):  
R. J. Cembrola ◽  
T. J. Dudek

Abstract Recent developments in nonlinear finite element methods (FEM) and mechanics of composite materials have made it possible to handle complex tire mechanics problems involving large deformations and moderate strains. The development of an accurate material model for cord/rubber composites is a necessary requirement for the application of these powerful finite element programs to practical problems but involves numerous complexities. Difficulties associated with the application of classical lamination theory to cord/rubber composites were reviewed. The complexity of the material characterization of cord/rubber composites by experimental means was also discussed. This complexity arises from the highly anisotropic properties of twisted cords and the nonlinear stress—strain behavior of the laminates. Micromechanics theories, which have been successfully applied to hard composites (i.e., graphite—epoxy) have been shown to be inadequate in predicting some of the properties of the calendered fabric ply material from the properties of the cord and rubber. Finite element models which include an interply rubber layer to account for the interlaminar shear have been shown to give a better representation of cord/rubber laminate behavior in tension and bending. The application of finite element analysis to more refined models of complex structures like tires, however, requires the development of a more realistic material model which would account for the nonlinear stress—strain properties of cord/rubber composites.


2014 ◽  
Vol 46 ◽  
pp. 65-72 ◽  
Author(s):  
Jodilson Amorim Carneiro ◽  
Paulo Roberto Lopes Lima ◽  
Mônica Batista Leite ◽  
Romildo Dias Toledo Filho

1978 ◽  
Vol 12 (3) ◽  
pp. 265-269 ◽  
Author(s):  
S. Miura ◽  
F. Hori ◽  
N. Nakanishi

Sign in / Sign up

Export Citation Format

Share Document