Science of Footwear Design

Author(s):  
Ravindra Goonetilleke ◽  
Channa Witana ◽  
Shuping Xiong
Keyword(s):  
2020 ◽  
Vol 20 (4) ◽  
pp. 372-381
Author(s):  
Suzana Kutnjak-Mravlinčić ◽  
Jadranka Akalović ◽  
Sandra Bischof

AbstractFunctionality and appearance are key aspects of good footwear. Developments in recent science and technology offer a wider scope of innovations, contributing to diversity and higher complexity of the production concept of footwear. Contemporary industrial footwear market offers a practically limitless number of new design and fashion solutions, often of quite similar appearance, but with significant differences in quality level, both regarding manufacture, raw material content, durability, and in some special functional finishes. The materials for footwear manufacture are functionalized for functional protective purposes, such as antimicrobial, waterproofing, fire resistant, wear and tear resistant, and recently for some therapeutical purposes. Novelties in material functionalization for the materials built in the footwear are most often promoted and presented on tags and labels and are used as advertisement issues, while some functionalities have become a logo for some brands.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1450
Author(s):  
Alfredo Ciniglio ◽  
Annamaria Guiotto ◽  
Fabiola Spolaor ◽  
Zimi Sawacha

The quantification of plantar pressure distribution is widely done in the diagnosis of lower limbs deformities, gait analysis, footwear design, and sport applications. To date, a number of pressure insole layouts have been proposed, with different configurations according to their applications. The goal of this study is to assess the validity of a 16-sensors (1.5 × 1.5 cm) pressure insole to detect plantar pressure distribution during different tasks in the clinic and sport domains. The data of 39 healthy adults, acquired with a Pedar-X® system (Novel GmbH, Munich, Germany) during walking, weight lifting, and drop landing, were used to simulate the insole. The sensors were distributed by considering the location of the peak pressure on all trials: 4 on the hindfoot, 3 on the midfoot, and 9 on the forefoot. The following variables were computed with both systems and compared by estimating the Root Mean Square Error (RMSE): Peak/Mean Pressure, Ground Reaction Force (GRF), Center of Pressure (COP), the distance between COP and the origin, the Contact Area. The lowest (0.61%) and highest (82.4%) RMSE values were detected during gait on the medial-lateral COP and the GRF, respectively. This approach could be used for testing different layouts on various applications prior to production.


2011 ◽  
Vol 5 ◽  
pp. 36 ◽  
Author(s):  
D.L. Riddiford-Harland ◽  
J.R. Steele ◽  
L.A. Baur

Author(s):  
Balasankar Ganesan ◽  
Palak Prasad ◽  
Suraiya Akter ◽  
Raymond K.Y. Tong
Keyword(s):  

Author(s):  
Ying Xu ◽  
Ajay Joneja

In this paper, we address a problem that arises in several engineering applications: the deformation of a curve with constraints on its length. Since length is an integral property, typically computed by numerical methods, therefore implementing such shape change operations is non trivial. Recently some researchers have attempted to solve such problems for multi-resolution representations of curves. However, we take a differential geometric approach. The modification problem is formulated as constrained optimization problem, which is subsequently converted to an unconstrained min-max problem using Lagrangian multipliers. This problem is solved using the Uzawa method. The approach is implemented in MATLAB™, and some examples are presented in the paper.


Sign in / Sign up

Export Citation Format

Share Document