Random field modelling of spatial variability in FRP composite materials

Author(s):  
S Sriramula ◽  
M Chryssanthopoulos
Author(s):  
Recep M. Gorguluarslan ◽  
O. Utku Gungor

Abstract In this study, the influence of the spatial variability of geometric uncertainties on the strut members of the lattice structures fabricated by additive manufacturing is investigated. Individual struts are fabricated with various printing angles and diameters using a material extrusion process and PLA material. The diameter values of the fabricated samples are measured along the printing and radial directions at each layer under an optical microscope. Spatial correlations are characterized based on the measurements using the experimental autocorrelation function. Candidate autocorrelation functions are fitted to the measured data to identify the best fitted one for each diameter parameter and the corresponding correlation lengths are evaluated for random field. The applicability of the Karhunen-Loeve expansion (KLE) is investigated to reduce the dimensionality of the random field discretization. The results show that the diameters of the strut members at each layer are spatially dependent and the KLE method was found to give a good representation of the random field.


2019 ◽  
Vol 56 (8) ◽  
pp. 1169-1183 ◽  
Author(s):  
M.K. Lo ◽  
Y.F. Leung

This paper introduces an approach that utilizes field measurements to update the parameters characterizing spatial variability of soil properties and model bias, leading to refined predictions for subsequent construction stages. It incorporates random field simulations and a surrogate modeling technique into the Bayesian updating framework, while the spatial and stage-dependent correlations of model bias can also be considered. The approach is illustrated using two cases of multi-stage braced excavations, one being a hypothetical scenario and the other from a case study in Hong Kong. Making use of all the deflection measurements along an inclinometer, the principal components of the random field and model bias factors can be updated efficiently as the instrumentation data become available. These various sources of uncertainty do not only cause discrepancies between prior predictions and actual performance, but can also lead to response mechanisms that cannot be captured by deterministic approaches, such as distortion of the wall along the longitudinal direction of the excavation. The proposed approach addresses these issues in an efficient manner, producing prediction intervals that reasonably encapsulate the response uncertainty as shown in the two cases. The capability to continuously refine the response estimates and prediction intervals can help support the decision-making process as the construction progresses.


2019 ◽  
Vol 36 (9) ◽  
pp. 2929-2959
Author(s):  
Hui Chen ◽  
Donghai Liu

Purpose The purpose of this study is to develop a stochastic finite element method (FEM) to solve the calculation precision deficiency caused by spatial variability of dam compaction quality. Design/methodology/approach The Choleski decomposition method was applied to generate constraint random field of porosity. Large-scale laboratory triaxial tests were conducted to determine the quantitative relationship between the dam compaction quality and Duncan–Chang constitutive model parameters. Based on this developed relationship, the constraint random fields of the mechanical parameters were generated. The stochastic FEM could be conducted. Findings When the fully random field was simulated without the restriction effect of experimental data on test pits, the spatial variabilities of both displacement and stress results were all overestimated; however, when the stochastic FEM was performed disregarding the correlation between mechanical parameters, the variabilities of vertical displacement and stress results were underestimated and variation pattern for horizontal displacement also changed. In addition, the method could produce results that are closer to the actual situation. Practical implications Although only concrete-faced rockfill dam was tested in the numerical examples, the proposed method is applicable for arbitrary types of rockfill dams. Originality/value The value of this study is that the proposed method allowed for the spatial variability of constitutive model parameters and that the applicability was confirmed by the actual project.


2010 ◽  
Vol 32 (10) ◽  
pp. 1731-1738 ◽  
Author(s):  
Anastasios P. Vassilopoulos ◽  
Behzad D. Manshadi ◽  
Thomas Keller

Author(s):  
Mostefa Bourchak ◽  
Yousef Dobah ◽  
Abdullah Algarni ◽  
Adnan Khan ◽  
Waleed K. Ahmed

Fiber Reinforced Plastic (FRP) composite materials are widely used in many applications especially in aircraft manufacturing because they offer outstanding strength to weight ratio compared to other materials such as aluminum alloys. The use of hybrid composite materials is potentially an effective cost saving design while maintaining strength and stiffness requirements. In this work, Woven Carbon Fibers (WCFs) along with Unidirectional Glass Fibers (UDGFs) are added to a an aerospace-rated epoxy matrix system to produce a hybrid carbon and glass fibers reinforced plastic composite plates. The manufacturing method used here is a conventional vacuum bagging technique and the stacking sequence achieved consists of a symmetric and balanced laminate (±451WCF, 03UDGF, ±451WCF) to simulate the layup usually adopted for helicopter composite blades constructions. Then, tensile static tests samples are cut according to ASTM standard using a diamond blade and tested using a servohydraulic test machine. Acoustic Emission (AE) piezoelectric sensors (transducers) are attached to the samples surface using a special adhesive. Stress waves that are released at the moments of various failure modes are then recorded by the transducers in the form of AE hits and events (a burst of hits) after they pass through pre-amplifiers. Tests are incrementally paused at load levels that represent significant AE hits activity which usually corresponds to certain failure modes. The unbroken samples are then thoroughly investigated using a high resolution microscopy. The multi load level test-and-inspect method combined with AE and microscopy techniques is considered here to be an innovation in the area of composite failure analysis and damage characterization as it has not been carried out before. Results are found to show good correlation between AE hits concentration zones and the specimens damage location observed by microscopy. Waveform analysis is also carried out to classify the damage type based on the AE signal strength energy, frequency and amplitude. Most of the AE activity is found to initiate from early matrix cracking that develops into delamination. Whereas little fiber failure activity has been observed at the initial stages of the load curve. The results of this work are expected to clear the conflicting reports reported in the literature regarding the correlation of AE hits characteristics (e.g. amplitude level) with damage type in FRP composite materials. In addition, the use of a hybrid design is qualitatively assessed here using AE and microscopy techniques for potential cost savings purposes without jeopardizing the weight and strength requirements as is the case in a typical aircraft composite structural design.


Sign in / Sign up

Export Citation Format

Share Document