Advanced fibre-reinforced polymer (FRP) composite materials for sustainable energy technologies

Author(s):  
L.C. Hollaway
Author(s):  
Tomasz Siwowski ◽  
Aleksander Kozlowski ◽  
Leonard Ziemiański ◽  
Mateusz Rajchel ◽  
Damian Kaleta

<p>Technology and materials can help cities get smarter and cope with rapid urbanisation. Life cycle assessment (LCA) is one of the approaches applied in evaluation of material sustainability. Many significant LCA comparisons of innovative and traditional construction materials indicate that fibre- reinforced polymer (FRP) composites compare very favourably with other materials studied. As a proposal for rapid urbanisation, the FRP all-composite road bridge was developed and demonstrated in Poland. The paper describes the bridge system itself and presents the results of research on its development. The output of the R&amp;D project gives a very promising future for the FRP composite bridge application in Poland, especially for cleaner, resilient and more environmentally efficient infrastructure of fast-growing cities.</p>


Author(s):  
Santosh Kumar ◽  
KK Singh

Application of fibre-reinforced polymer composites has increased over the last two decades as compared to conventional materials. This improvement in the application of fibre-reinforced polymer composites is attributed to their unique material properties, such as high strength and stiffness-to-weight ratio, specific modulus and internal vibration damping. However, in most of the industrial applications, composite materials encounter tribological complications. Economic indicators and market dynamics suggested that the market for composite materials is booming and the dominant materials are carbon fibres, glass fibres and thermoset polymer (polyester resin) in resin segments. That is why tribological characteristics are crucial in designing carbon and glass-based fibre-reinforced polymer components. Owing to this importance, the study of tribological behaviour of fibre-reinforced polymer composite materials has expanded significantly. The present study has made an attempt to review the fundamental tribological applications and critical aspects of fibre-reinforced polymers, based on research work, which has been carried out over the past couple of decades. This work has primarily focused on the fibre-reinforced polymer composites, based on carbon and glass fibres with thermosets as the matrix material for probing into tribological behaviours. In the process, the focus has largely been on the most commonly occurring erosive and abrasive mode of wear process.


2015 ◽  
Vol 1124 ◽  
pp. 89-96
Author(s):  
Jan Prokeš

The paper is focused on the use of advanced composite materials in the real application areas of buildings exposed to extreme environmental stress. The paper describe properties of composite rebar, especially with regards to long-term resistance to chemical and corrosion attack, minimization of heat transfer or resistance in construction with reduced concrete cover. The paper also presents behavior of composite rebar and concrete samples with composite reinforcement during loading and fire tests.


MRS Bulletin ◽  
2008 ◽  
Vol 33 (8) ◽  
pp. 770-774 ◽  
Author(s):  
Ian P. Bond ◽  
Richard S. Trask ◽  
Hugo R. Williams

AbstractSelf-healing is receiving an increasing amount of interest worldwide as a method to address damage in materials. In particular, for advanced high-performance fiber-reinforced polymer (FRP) composite materials, self-healing offers an alternative to employing conservative damage-tolerant designs and a mechanism for ameliorating inaccessible and invidious internal damage within a structure. This article considers in some detail the various self-healing technologies currently being developed for FRP composite materials. Key constraints for incorporating such a function in FRPs are that it not be detrimental to inherent mechanical properties and that it not impose a severe weight penalty.


2020 ◽  
Vol 64 (189) ◽  
pp. 75-84
Author(s):  
Łukasz Gołębiowski ◽  
Marcin Siwek ◽  
Marcin Ciesielski ◽  
Andrzej Zagórski ◽  
Sławomir Krauze ◽  
...  

The subject of the modelling work and the conducted experiments is the composite shell of a train seat. The activities carried out involved designing the geometry, planning the material structure, and selecting the materials to be used. The shell was built using polymer matrix fibrous composites (i.e. FRP – Fibre Reinforced Polymer – composites), which are lighter than steel and comply with the relevant standards for strength and safety at the same time. This was followed by creating a computational model for the shell and conducting a strength analysis in accordance with the guidelines of the relevant industry standard and strength hypotheses adopted for FRP composites. The calculations were conducted using ANSYS Composite PrepPost software based on the finite element method. The article offers a strength analysis of an optimised composite shell of a train seat. Based on the guidelines obtained as a result of the conducted modelling work, a physical prototype (validation model) of the seat was created. Hot vacuum lamination technology was applied in the production process. The experimental validation of the model, producing a positive result, was conducted using a test stand owned by S.Z.T.K. TAPS – Maciej Kowalski. Keywords: train seat structure, FRP composite, FEM modelling, experimental validation


Glass Fiber Reinforced Polymer (GFRP) is one of a relatively new class of composite material. These materials are manufactured from a combination of fibers and resins. These composite materials have proven to be efficient and economical for the development of new structures and the repair of deteriorating structures in civil engineering. One of the important reasons for the use of GFRP composite materials is because of its superior mechanical properties. These mechanical properties includes impact resistance, strength, stiffness, flexibility and also its enhanced ability to carry loads. In construction industry, in order to meet the advanced infrastructure requirements, new innovative technologies and materials are being introduced. Also any new technology or material has its own limitations but to meet the new requirements, new technologies and materials have to be invented and put to use. With structures becoming old and increasing bar corrosion, old buildings have to be retrofitted with additional materials to increase their durability and life. For strengthening and retrofitting of concrete structures confinement with FRP has various applications. In this project concrete specimens are wrapped with glass fibre reinforced polymers to study the effect of confinement in the strength of specimens. For wrapping bi-directional and uni-directional glass fibre reinforced polymer mats are used. During the uni-directional glass fibre reinforced polymer wrapping, it is wrapped in both horizontal and vertical directions. The fiber used in this paper is bi-directional fibre. To find the effect of wrapping, specimens are wrapped in one rotation and two rotations.


Author(s):  
Girish Dutt Gautam ◽  
◽  
Sunita Rani ◽  
Sudhanshu Raghuwanshi ◽  
Samendra Singh ◽  
...  

A higher product diversification range with excellent physical, mechanical and chemical properties make Fiber-reinforced polymer (FRP) composite materials a prominent candidate for engineering applications. But, conventional manufacturing techniques always face critical issues during the development of FRP's complex and intrinsic profile. In recent years, Additive Manufacturing (AM) or 3-D printing proves itself a robust technique to produce application-specific parts of FRP composites with a higher degree of customization. In comparison to other 3D printing techniques, Stereolithography (SLA) is able to create mechanically stable objects with higher processing speed. This information paves the way for the present review article. This paper reviews the recent advancement of SLA technique to develop objects of FRP composite materials.


Sign in / Sign up

Export Citation Format

Share Document