Integrated Network Architecture Design for Wireless Systems

2011 ◽  
pp. 107-149
Author(s):  
Li Jun ◽  
Liyan Zhang ◽  
Laurent Marchand
2014 ◽  
Vol 628 ◽  
pp. 218-224 ◽  
Author(s):  
Konstantinos Oikonomou ◽  
George Koufoudakis ◽  
Eleni Kavvadia ◽  
Vassilios Chrissikopoulos

Wireless sensor networks can be beneficial for monitoring ambient vibrations in historical buildings where the installation of traditionally wired system may be either difficult due to wiring difficulties or forbidden due to prohibitive legislation. In this paper, a novel wireless sensor network architecture is presented that is focusing on efficiently monitoring ambient vibrations in historical buildings. Traditional wired monitoring technologies are often difficult to be installed in historical buildings either to high costs for installing the wires or to prohibitive legislations. Employing a wireless system could be beneficial. However, as there is no wireless system of high resolution available in the market, an innovative network architecture is proposed that efficiently combines the benefits of both the wired and wireless systems. The problem of synchronization that this novel architecture introduces, is also discussed in this paper along with a possible solution.


2019 ◽  
Vol 116 (16) ◽  
pp. 8018-8027 ◽  
Author(s):  
Joel D. Hahn ◽  
Olaf Sporns ◽  
Alan G. Watts ◽  
Larry W. Swanson

Control of multiple life-critical physiological and behavioral functions requires the hypothalamus. Here, we provide a comprehensive description and rigorous analysis of mammalian intrahypothalamic network architecture. To achieve this at the gray matter region (macroscale) level, macroscale connection (macroconnection) data for the rat hypothalamus were extracted from the primary literature. The dataset indicated the existence of 7,982 (of 16,770 possible) intrahypothalamic macroconnections. Network analysis revealed that the intrahypothalamic macroconnection network (its macroscale subconnectome) is divided into two identical top-level subsystems (or subnetworks), each composed of two nested second-level subsystems. At the top-level, this suggests a deeply integrated network; however, regional grouping of the two second-level subsystems suggested a partial separation between control of physiological functions and behavioral functions. Furthermore, inclusion of four candidate hubs (dominant network nodes) in the second-level subsystem that is associated prominently with physiological control suggests network primacy with respect to this function. In addition, comparison of network analysis with expression of gene markers associated with inhibitory (GAD65) and excitatory (VGLUT2) neurotransmission revealed a significant positive correlation between measures of network centrality (dominance) and the inhibitory marker. We discuss these results in relation to previous understandings of hypothalamic organization and provide, and selectively interrogate, an updated hypothalamus structure–function network model to encourage future hypothesis-driven investigations of identified hypothalamic subsystems.


2016 ◽  
Vol 54 (11) ◽  
pp. 24-32 ◽  
Author(s):  
Patrick Marsch ◽  
Icaro Da Silva ◽  
Omer Bulakci ◽  
Milos Tesanovic ◽  
Salah Eddine El Ayoubi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document