1994 ◽  
Vol 116 (3) ◽  
pp. 550-553 ◽  
Author(s):  
Chung-Wen Chen ◽  
Jen-Kuang Huang

This paper proposes a new algorithm to estimate the optimal steady-state Kalman filter gain of a linear, discrete-time, time-invariant stochastic system from nonoptimal Kalman filter residuals. The system matrices are known, but the covariances of the white process and measurement noises are unknown. The algorithm first derives a moving average (MA) model which relates the optimal and nonoptimal residuals. The MA model is then approximated by inverting a long autoregressive (AR) model. From the MA parameters the Kalman filter gain is calculated. The estimated gain in general is suboptimal due to the approximations involved in the method and a finite number of data. However, the numerical example shows that the estimated gain could be near optimal.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1168 ◽  
Author(s):  
Ligang Sun ◽  
Hamza Alkhatib ◽  
Boris Kargoll ◽  
Vladik Kreinovich ◽  
Ingo Neumann

In this paper, we propose a new technique—called Ellipsoidal and Gaussian Kalman filter—for state estimation of discrete-time nonlinear systems in situations when for some parts of uncertainty, we know the probability distributions, while for other parts of uncertainty, we only know the bounds (but we do not know the corresponding probabilities). Similarly to the usual Kalman filter, our algorithm is iterative: on each iteration, we first predict the state at the next moment of time, and then we use measurement results to correct the corresponding estimates. On each correction step, we solve a convex optimization problem to find the optimal estimate for the system’s state (and the optimal ellipsoid for describing the systems’s uncertainty). Testing our algorithm on several highly nonlinear problems has shown that the new algorithm performs the extended Kalman filter technique better—the state estimation technique usually applied to such nonlinear problems.


2018 ◽  
Vol 75 ◽  
pp. 55-68 ◽  
Author(s):  
Daniel Viegas ◽  
Pedro Batista ◽  
Paulo Oliveira ◽  
Carlos Silvestre

Sign in / Sign up

Export Citation Format

Share Document