Characterization of hydro-mechanical rock properties of argillaceous clay as a constituent of a geological barrier system

2010 ◽  
pp. 129-137
Author(s):  
T Popp ◽  
K Salzer
2016 ◽  
Author(s):  
Ghazi M. Kraishan ◽  
Shouxiang Mark Ma ◽  
Evgeny Dyshlyuk ◽  
Salah M. Al-Ofi ◽  
Andrea Valori ◽  
...  

2019 ◽  
Vol 60 (80) ◽  
pp. 49-65
Author(s):  
Jeff W. Crompton ◽  
Gwenn E. Flowers ◽  
Brendan Dyck

AbstractGlacial erosion produces vast quantities of fine-grained sediment that has a far-reaching impact on Earth surface processes. To gain a better understanding of the production of glacial silt and clay, we use automated mineralogy to quantify the microstructure and mineralogy of rock and sediment samples from 20 basins in the St. Elias Mountains, Yukon, Canada. Sediments were collected from proglacial streams, while rock samples were collected from ice marginal outcrops and fragmented using electrical pulse disaggregation. For both rock fragments and sediments, we observe a log-normal distribution of grain sizes and a sub-micrometer terminal grain size. We find that the abrasion of silt and clay results in both rounding and the exploitation of through-going fractures. The abundance of inter- versus intragranular fractures depends on mineralogy and size. Unlike the relatively larger grains, where crushing and abrasion are thought to exploit and produce discrete populations of grain sizes, the comminution of fines leads to a grain size, composition and rounding that is continuously distributed across size, and highly dependent on source-rock properties.


2021 ◽  
Vol 2 ◽  
pp. 33-53
Author(s):  
Yulun Wang ◽  
Guofan Luo ◽  
Mercy Achang ◽  
Julie Cains ◽  
Conn Wethington ◽  
...  

From a hydrocarbon perspective, the Caney Shale has historically been evaluated as a sealing unit, which resulted in limited studies characterizing the rock properties of the Caney Shale and its suitability for hydraulic fracturing. The objective of our research is to help bridge the current knowledge gap through the integration of multiscale laboratory techniques and to characterize the macro- and microscale rock properties of the Caney Shale. We employed an integrated approach for the characterization of the Caney using 200 ft (61 m) of Caney core from a target well in southern Oklahoma. Core observation and petrographic analysis of thin sections were combined to characterize the general rock types and associated fabrics and textures. Mineralogical composition, pore system architecture, and rock fabric were analyzed using x-ray diffraction (XRD), scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS), and focused ion beam (FIB)-SEM. In addition, rebound hardness and indentation testing were carried out to determine rock hardness (brittleness) and elasticity, respectively. With the integrated multiscale characterization, three mixed carbonate-siliciclastic rock types were identified — mudstone, calcareous siltstone, and silty carbonate — likely representing a spectrum of deposition from low to relatively high energy environments in the distal portions of a ramp system. Silty carbonate contains mostly interparticle pores. The calcareous siltstones and silty mudstones contain a combination of organic matter pores and interparticle pores. Each of the rock types shows unique mineralogical compositions based on XRD. The mudstone lithofacies has the highest clay content and the least carbonate content. Calcareous siltstones show moderate carbonate and clay content. Silty carbonate indicates the highest carbonate content with the least clay content. In an order of mudstone, calcareous siltstone, and silty carbonate, rebound hardness and Young’s modulus show an increasing trend. As a result of rock-fluid interactions, there are potential scaling reactions during completion and production that could ultimately affect permeability and production rates. Overall, the proposed multiscale integration approach is critical for the geologic characterization of most rocks. However, in shale reservoirs dominated by microporosity and microstructure where engineered fractures are expected to provide permeability at a reservoir scale, successful integration is essential. An optimized, integrated geological characterization of the Caney Shale that is well aligned with the engineering designs in drilling, completing, and producing wellbores will ultimately lead to optimal production while providing safe and environmentally responsible operations.


Author(s):  
Fernandes Leão M

The understanding of geotechnical and geomechanical rock mass behavior is challenging, mainly regarding weathered parts, since they may trigger stability issues. Soft Rocks, as phyllite, are known to enhance these problems. In this case, a road cut on a highway between the cities of Ouro Preto and Mariana (MG – Brazil) was studied, showing a particular weathering zone with changing conditions. After morphological description and geological fragmentation (using geological hammer, the Schmidt hammer and a switchblade) of the weathering zone, tests were done on rock matrix and rock mass in order to identify the discontinuity features. Physical properties were determined by physical index, using the point load test and slake durability test. The results permit to define the weathering zone, showing some huge anisotropy and heterogeneity in the rock properties.


2021 ◽  
Author(s):  
Shadi Salahshoor

Abstract Leveraging publicly available data is a crucial stepfor decision making around investing in the development of any new unconventional asset.Published reports of production performance along with accurate petrophysical and geological characterization of the areashelp operators to evaluate the economics and risk profiles of the new opportunities. A data-driven workflow can facilitate this process and make it less biased by enabling the agnostic analysis of the data as the first step. In this work, several machine learning algorithms are briefly explained and compared in terms of their application in the development of a production evaluation tool for a targetreservoir. Random forest, selected after evaluating several models, is deployed as a predictive model thatincorporates geological characterization and petrophysical data along with production metricsinto the production performance assessment workflow. Considering the influence of the completion design parameters on the well production performance, this workflow also facilitates evaluation of several completion strategies toimprove decision making around the best-performing completion size. Data used in this study include petrophysical parameters collected from publicly available core data, completion and production metrics, and the geological characteristics of theNiobrara formation in the Powder River Basin. Historical periodic production data are used as indicators of the productivity in a certain area in the data-driven model. This model, after training and evaluation, is deployed to predict the productivity of non-producing regions within the area of interest to help with selecting the most prolific sections for drilling the future wells. Tornado plots are provided to demonstrate the key performance driversin each focused area. A supervised fuzzy clustering model is also utilized to automate the rock quality analyses for identifying the "sweet spots" in a reservoir. The output of this model is a sweet-spot map that is generated through evaluating multiple reservoir rock properties spatially. This map assists with combining all different reservoir rock properties into a single exhibition that indicates the average "reservoir quality"of the formation in different areas. Niobrara shale is used as a case study in this work to demonstrate how the proposed workflow is applied on a selected reservoir formation whit enough historical production data available.


2000 ◽  
Author(s):  
S. S. Alexander ◽  
D. M. Falkenstern ◽  
T. J. Gebbie ◽  
M. Zeisloft

2021 ◽  
Author(s):  
Martin Balcewicz ◽  
Mirko Siegert ◽  
Marcel Gurris ◽  
David Krach ◽  
Matthias Ruf ◽  
...  

<p>Over the last two decades, Digital Rock Physics (DRP) has become a complementary part of the characterization of reservoir rocks due to, among other things, the non-destructive testing character of this technique. The use of high-resolution X-ray Computed Tomography (XRCT) has become widely accepted to create a digital twin of the material under investigation. Compared to other imaging techniques, XRCT technology allows a location-dependent resolution of the individual material particles in volume. However, there are still challenges in assigning physical properties to a particular voxel within the digital twin, due to standard histogram analysis or sub-resolution features in the rock. For this reason, high-resolution image-based data from XRCT, transmitted-light microscope, Scanning Electron Microscope (SEM) as well as inherent material properties like porosity are combined to obtain an optimal spatial image of the studied Ruhr sandstone by a geologically driven segmentation workflow. On the basis of a homogeneity test, which corresponds to the evaluation of the grayscale image histogram, the preferred scan sample sizes in terms of transport, thermal, and effective elastic rock properties are determined. In addition, the advanced numerical simulation results are compared with laboratory tests to provide possible upper limits for sample size, segmentation accuracy, and a calibrated digital twin of the Ruhr sandstone. The comparison of representative grayscale image histograms as a function of sample sizes with the corresponding advanced numerical simulations, provides a unique workflow for reservoir characterization of the Ruhr sandstone.</p>


Sign in / Sign up

Export Citation Format

Share Document