Reduction of expansive index and free swell of Kaolinite and Bentonite clay using sand and Class C fly ash

Author(s):  
P Kolay ◽  
K Ramesh
Keyword(s):  
Fly Ash ◽  
2021 ◽  
Vol 904 ◽  
pp. 413-418
Author(s):  
Wilasinee Kingkam ◽  
Sasikarn Nuchdang ◽  
Dussadee Rattanaphra

Coal fly ash (CFA) and bottom ash (BA) obtained from coal fired power plants in Thailand and local supplier were characterized using XRF, XRD and N2 adsorption-desorption techniques. Their possibilities for conversion of palm oil into biodiesel were investigated. Selected CFA was also modified with lanthanum (La) at different La loading and the influence of La loading on biodiesel conversion was evaluated. The resulted showed that the Class C CFA as contained large amount of CaO (free lime) could catalyze the transesterification to achieve the highest FAME content of 89% under the operation conditions; the reaction temperature of 200 °C, the reaction pressure of 39 bars, the catalyst loading of 5 wt% of oil, the molar of oil to methanol of 1:30 and the stirring speed of 600 rpm for 5 h. The addition of La on the Class C CFA had a negative effect on conversion of palm oil. The FAME content decreased gradually from 89 to 62% with increasing La loading from 0 to 1 wt%.


2021 ◽  
Author(s):  
Arie Wardhono ◽  
Bambang Sabariman ◽  
M. Imaduddin ◽  
M. Firmansyah Sofianto ◽  
Ninik W. Hidajati ◽  
...  
Keyword(s):  
Fly Ash ◽  

2019 ◽  
Vol 296 ◽  
pp. 149-154
Author(s):  
Radomír Sokolář ◽  
Martin Nguyen

Fluid fuel combustion technology in coal-fired power plants is very popular in the Czech Republic, resulting in a relatively high production of a specific by-product - fluidized fly ash (class C according to ASTM definition), which differs from the classical high-temperature fly ash in mineralogical composition with a high sulphur content of anhydrite CaSO4. Fluidized ash is not yet used in the production of fired building materials, where it could be used as a source of calcium oxide (for example, the production of porous ceramic tiles). However, high volume of sulphur dioxide emissions during the re-firing of fluidized fly ash in ceramic raw materials mixtures has been solved. The aim of the paper is definition of temperature ranges of anhydrite decomposition (formation of SO2 emission) from pure class C (fluidized) fly ashes from different sources (power plants) depending on granulometry of fly ash especially.


2019 ◽  
Vol 276 ◽  
pp. 01014
Author(s):  
I Made Alit Karyawan Salain ◽  
I Nyoman Sutarja ◽  
Teguh Arifmawan Sudhiarta

This experimental study presents the properties of highperformance concrete (HPC) made by partially replacing type I Portland cement (OPC) with class C fly ash (CFA). The purpose of this study is to examine, with hydration time, the development of the compressive strength, the splitting tensile strength and the permeability of HPC utilizing different quantity of CFA. Four HPC mixtures, C1, C2, C3, and C4, were made by utilizing respectively 10%, 20%, 30% and 40% of CFA as replacement of OPC, by weight. One control mixture, C0, was made with 0% CFA. The mix proportion of HPC was 1.00 binder: 1.67 fine aggregate: 2.15 coarse aggregate with water to binder ratio 0.32. In each mixture, it was added 5% silica fume and 0.6% superplasticizer of the weight of the binder. Tests of HPC properties were realized at the age of 1, 3, 7, 28, and 90 days. The results indicate that CFA used to partially replace OPC in HPC shows adequate cementitious and pozzolanic properties. The compressive strength and the splitting tensile strength of HPC increase while the permeability coefficient decreases with increasing hydration time. It is found that the optimum replacement of OPC with CFA is 10%, however the replacement up to 20% is still acceptable to produce HPC having practically similar harden properties with control mixture. At this optimum replacement and after 90 days of hydration, the compressive strength, the splitting tensile strength and the permeability coefficient can reach 68.9 MPa, 8.3 MPa and 4.6 E-11 cm/sec respectively. These results are 109%, 101%, and 48% respectively of those of control mixture.


Sign in / Sign up

Export Citation Format

Share Document